Using Galaxy Clusters to constrain Dark Energy

David Gilbank, South African Astronomical Observatory Edo van Uitert, UCL and the RCS-2 Collaboration

Cosmology with Large Surveys, Durban 2016

Outline

- Using Galaxy Cluster abundances to constrain Cosmological Parameters
- . The Red-sequence Cluster Survey-2 (RCS-2)
- Calibration of the Mass--Richness Relation
 van Uitert, Gilbank et al. 2016, A&A, 586, 43

(Borgani & Guzzo 2001) Normalized to space density at z=0; circles: clusters with T>3 keV & ∝T

ELAIS_SP http://www.rcs2.org

Using the Red-sequence to find Clusters

Using the Red-sequence to find Clusters

Using the Red-sequence to find Clusters

Mass--Richness Relation

Optical richness

Alternative: use all the survey data themselves

Stacked Weak Lensing Analysis

van Uitert, Gilbank et al. 2016, A&A, 586, 43

Method

. Find cluster centre (BCG)

. Measure richness: . N_{...}: M<M*+1; r < 1Mpc M<M*+1; N 200

$= 0.156 N_{gal}^{0.6}$ Mpc From simulations

MaxBCG SDSS sample (Hansen et al. 2005)

r < 1200 Statistical background subtraction

~10 000 clusters

Determine average tangential shear for lens bins of z, N_{200}

Use halo model (Johnston et al. 07)

- Fraction of clusters will not be correctly centred

Far from lens, neighbouring structures add to signal
 Scatter in richness-mass

not accounting for this biases results

Tangential shear

Decrease in amplitude towards low-z suggests build-up
 of Red Sequence

 Similar trend seen in X-ray & vel. disp for maxBCG (Becker et al. 2007, Rykoff et al. 2008)

Conclusions

- Analysed ~10 000 clusters up to <z> ~0.7
- Combined shear and clus-sat corr. measurements, interpreted using halo model (Johnston et al. 2007 ++)

N₂₀₀ -- M₂₀₀ relation evolves, likely due to build-up of red-sequence

 35% BCGs at centre DM halo, rest follows 2D-Gaussian with 0.2-0.4 Mpc width

 Plus results on concentration, bias as fn(M_{halo}), see: van Uitert, Gilbank, et al. 2016 A&A, 586, 43

Halo model (extension of Johnston et al. 2007) 4 terms:

- point source [fixed by M_{NFW} via relation]
- centred term [M_{NFW}, c, p_c]
- miscentred term $[(M_{NFW}, c, 1-p_c), \sigma_s]$
- 2-halo term [b]
- $\xi = A \sum_{cs} [(M_{NFW}, p, \sigma, b), c, A] + convolve with log-normal distribution [\sigma_{lnM|N200}]$
- 8 fit parameters, use uninformative priors except for $\sigma_{lnM|N200}$

We have catalogues of RS candidates determine cluster-satellite correlation ξ_{cs}

(satellites defined as all RS members brighter than M*+1 at cluster-z)

Assuming that satellites follow DM (but allowing for a different concentration) miscentring as shear (see also Hikage+13)

Smaller effect of miscentring on Σ outweighed by larger S/N in measurement?

Fit together with the lensing signal using halo model

 Good agreement low-z
 Higher normalisation intermediate-z

 Possibly selection and projection effects

 Need to check with simulations

Method

. Find cluster centre (BCG)

-

(Borgani & Guzzo 2001) Normalized to space density at z=0; circles: clusters with T>3 keV & \propto T

THE PAST

(Borgani & Guzzo 2001) Normalized to space density at z=0; circles: clusters with T>3 keV & ∝T

NOW

(Borgani & Guzzo 2001) Normalized to space density at z=0; circles: clusters with T>3 keV & ∝T

Cluster--satellite correlation function

Centering fraction

Width

METHOD: Determine cluster's centre: find BCG

Two-step approach

 brightest RS-member within 500 kpc from luminosity centre

 second brightest gal. if at most 0.5 mag fainter, but 100 kpc closer to lum. centre

Compute mass proxy richness from RS-member list

- N_{gal}: # of RS brighter than M*+1 within 1 Mpc
- Estimate r via $r_{200}^{
 m gal}=0.156N_{
 m gal}^{
 m 0.6}~
 m Mpc$ (Hansen et al. 2005)

- counting within r₂₀₀ gives N₂₀₀
- subiract < background>

(note: SDSS-maxBCG papers use range of slightly different definitions)

Problem: miscentring distribution not constrained by lensing alone

p_c=(1+exp(-q))⁻¹ maxBCG used simulations to get priors The risk: wrong priors can bias results

Cluster abundance

RCS-2

<u>nttp://www.rcs2.org</u>

Properties of Cluster Galaxies

Red-sequence Cluster Surveys Find clusters out to z-1 with red-sequence technique

- RCS-2 Gilbank, Gladders, Yee, Hsieh AJ, 141, 94
 - . Imaged ~1000 deg² in *g'*, *r'*, *z'*
 - . Discovered ~10 000 clusters!

Red-sequence Cluster Surveys RCS-2 roliticater Gladders, Tewith Been Sequence technique AJ, 141, 94

- imaging completed -- 785 deg² in
 r', *i*', *z*' with CFHT MegaCam (*g*~25.3,
 r~24.8, *z*~22.5, AB)
- . +171 deg² CFHTLS Wide

http://www.rcs2.org

The Universe

 Ω_{\wedge} =0.74

Equation of state of dark energy

 $P = w\rho$

Spectroscopic Follow-up

 10 year+ campaign to follow-up well-defined subsample of clusters for mass calibration

Spectroscopic Follow-up

- 10 year+ campaign to follow-up well-defined subsample of clusters for mass calibration
- . CFHT-MOS, K. Blindert PhD Thesis (U. Toronto, 2006)
- 6.5-m Magellan LDSS-3, IMACS; 8-m Gemini GMOS-N,S;
 8-m VLT FORS2 (Gilbank et al. 2007, 2008, in prep.)
- In addition to dynamical masses from optical Multi-Object Spectroscopy (MOS):
 - strong and weak gravitational lensing, X-ray, SZ,

- equation of state parameter, w, to an accuracy of 0.1 using RCS-2 alone, or 0.05 when combined with SNe/CMB
- Discover ~50-100 high surface brightness, strongly-lensed, distant galaxies, with which to study in detail representative galaxies in the high redshift universe
- Produce a sample of -20 000 30 000 clusters in the redshift range 0.1-1.0 with which to study cluster galaxy evolution

Measuring Cosmological Parameters with RCS-2

Cluster abundance

. e.g., Majumdar & Mohr (2004) An I 613, 41

BAO with WiggleZ Blake et al. (2011) arXiv1

 B
 C
 Mobile
 News
 Sport
 Weather
 Trav

 NEWS
 SCIENCE & ENVIRONMENT
 Image: Constraint of the state of the state

19 May 2011 Last updated at 21:27 GMT

New method 'confirms dark energy'

By Paul Rincon Science reporter, BBC News

First results from a major astronomical survey using a cutting-edge technique appear to have confirmed the existence of mysterious dark energy.

Dark energy makes up some 74% of the Universe and its existence would explain why the Universe appears to be expanding at an accelerating rate.

Measuring Cosmological Parameters with RCS-2

- Cluster abundance
 - e.g., Majumdar & Mohr 2004 ApJ 613, 41
- Strong lens statistics
- BAO with WiggleZ
 - Glazebrook et al., astro-ph/0701876

Red-sequence redshift accuracy

Cluster counts from RCS-1

Gladders et al. 2007 App), 655, <u>128</u> feithick =0.31+/-0.10 9.187/12/SEP-E-Mibration it for cosmological parameters and unknown mass--richness relation

Example Strong Lensing Clusters

lensing cluster at z_{est}=0.59 with giant lensing clus arc bright arcs Images from the RCS-2 g, r', z' survey data

lensing cluster at z_{est}=0.58 with multiple bright arcs z'survey data

Example Strong Lensing Clusters

DSS

lensing cluster at $z_{est} = 0.59$ with giant

Images from the RCS-2 g r, z survey data

arc

Example Strong Lensing Clusters

Properties of lensed galaxy studied in Wuyts et al. (2010) ApJ, 724, 1182

Larger sample: Wuyts,
 Rigby, Gilbank,

Images from the RCS-2 gt rt zt survey Gladders (2011) in prep

lensing cluster at $z_{est} = 0.59$ with giant arc

mass--richness relation

dynamical Blinderreral, ApJS B

SUIDINITIE

Chandra Hicks et al. astro-ph/0710.5513 XMM-LSS

log(O)~0.6, c.f. Lx=Miscatter (Nord et al. 2008)

Opti

Dynamical Mass

Optica

Gilbank et al. in prep, Ellingson et al. in prep

 $0.2 \leq z \leq 1.1$

Dynamical Mass

Optica

Ellingson et al. in prep

Optica

Gilbank et al. in prep, Ellingson et al. in prep

"Fried Eggs"

Opti

Optic

Chandra X-ray masses

Optica

RSS on SALT Robert Stobie Spectrograph

First MOS data March 2012!

Summary

- Cosmological parameters can be measured by counting galaxy clusters
- . RCS-2 1000 deg² survey, ~10 000 clusters
 - should be able to measure w to ±10% using RCS-2 alone, or ±5% when combined with SNe/CMB
- Calibration of the mass--richness observable is essential!
 - Dynamical masses from optical spectroscopy is an efficient method

Calibrating Mass Observables for Optical Surveys

David Gilbank, South African Astronomical Observatory Edo van Uitert, UCL van Uitert, Gilbank et al. 2016, gilbank@saao.ac.74&A, 586, 43

Cosmology with Large Surveys, Durban 2016

