

UNIVERSITY of the WESTERN CAPE

Center for Radio Cosmology

Polarized synchrotron for EoR experiments

Cosmology with Large Surveys UKZN Durban 23/11/2016

Marta Spinelli in collaboration with Gianni Bernardi and Mario Santos

Foregrounds for EoR

e.g. Santos et al 2005, Alonso et al 2014

foregrounds several orders of magnitude above the 21 cm signal

- Extragalactic Point Sources (PS) radio galaxies, AGNs, ...
- Galactic and Extragalactic freefree

low frequency radio background produced by bremsstrahlung radiation from electron-ion collisions

EPOCH OF REIONIZATION

EXTRAGALACTIC FOREGROUNDS

GALACTIC FOREGROUNDS

credit: LOFAR

- Galactic synchrotron (dominant foreground) cosmic ray electrons interacting with the galactic magnetic field

Polarized Synchrotron

Why it is important?

- spectral smoothness is the key of proper foreground subtraction
- polarized synchrotron has non trivial frequency structure
- can leak in the unpolarised part due to instrumental and calibration issues

Synchrotron generalities

e.g Burn (1966)

- Depends on B ____ to the LOS modulated by the density of *cosmic electron*
- CR power law energy density: $n(E) \sim E^{-p}$
- Diffuse polarised emission:

$$P = \Pi_0 I e^{2i\phi}$$

$$\phi = \phi_0 + \psi(s, \hat{\mathbf{n}})\lambda^2$$

faraday rotation given by B// and the presence of *thermal electrons*

$$\psi = \frac{e^3}{2\pi (m_e c^2)^2} \int_{LOS} n_e B_{||} dr$$

faraday depth or ~RM

Rotation Measure (RM) synthesis

e.g Burn (1966), Bretjens&Bruyn (2005)

use Fourier relation between polarised surface brightness (P) and surface brightness per unit of Faraday depth F

$$P(\lambda^2) = \int_{-\infty}^{+\infty} F(\phi) e^{2i\phi\lambda^2} d\phi$$

- only positive lambda have physical meaning
- and incomplete sampling in lambda^2

need to define a RM transfer function (RMTF) that gives the resolution in Faraday depth:

FWHM ~ (Delta lambda^2)^-1 total bandwidth *lack of sensitivity to structures extended in Faraday depth*

http://intensitymapping.physics.ox.ac.uk/CRIME.html

CRIME Synchrotron simulations

- done in RM space
- tuned on Hammurabi simulations and use RM from *Opperman et al*.

ⓐ EoR frequenciesP simulations are difficult:

- lack of correlation with total intensity
- *depolarisation* effects

e.g. Burn (1966), G. Bernardi et al. 2013

Murchison Widefield Array @ 189 MHz

- MWA 32 element 2400 sq degrees
- I, Q, U measurements
- Rotation measure (RM) synthesis

cube of polarised images at selected faraday depth

-50 < RM < +50 rad m^-2 in steps of 1 rad m^-2 RMTF 4.3 rad m^-2

K(psi) for psi=0 rad m^-2

- Run MWA-like CRIME sims
- Compare sims and data

structures without total intensity counterpart

RM-synthesis on CRIME simulations

MWA-like sims:

- same frequency range
- same patches in the sky
- same frequency and angular resolution

Apply on SIM same pipeline of the DATA:

- RM-synthesis
- RM-CLEAN to remove Side-lobes of RMTF

RM-synthesis and RM-clean

e.g Bretjens&Bruyn (2005), Heald, Brown&Edmonds (2009)

- After RM-synthesis the Faraday cube can be deconvolve from the effect of RMTF
- procedure finds peaks and iterative subtract a scaled version of RMTF

Can we say something directly from DATA?

MWA data behaviour

at fixed RM looking at different LOS

- The farthest slices in the cube can be use to estimate the noise level
- At fixed RM the data follow a Rayleigh distribution.
 consequence of the assumption U, Q ~ N(0, sigma)

- PS reconstruction using *HEALPIX* (*K.M. Gorski et al., 2005*) and the MASTER algorithm for mask deconvolution (*Hivon et al, 2002*)
- we can model it with a power law

MWA data behaviour

- study the distribution of pixels above different *sigma noise cutoff* for every LOS
- as a function of RM the % of pixel above threshold
- the signal is concentrated around $\sim RM=0$

as a function of RM, fixing LOS

- use these properties to generate a RM cube
- Fourier transform back to polarisation intensity P
- compare with (and improve) CRIME
 simulations (Alonso et al 2014)

Conclusions

- Polarized synchrotron can in principle be a challenge for component separation techniques
- Simulations @ low frequency (where EoR is) can not be tuned on higher frequency data or unpolarised synchrotron emission

With CRIME simulations:

- generate Q and U full sky maps as close as possible to MWA data
- apply RM analysis to them (and cleaning)
- check statistical behaviour
- change CRIME to fit MWA?

With MWA data:

- find a statistical behaviour for K(psi)
- describe the distribution of peaks
- Can we extend it full sky?