How does the large-scale structure bias the Hubble diagram?

Pierre Fleury

University of Cape Town
University of the Western Cape

Presentation based on [1611.soon] with C. Clarkson, R. Maartens, and O. Umeh.

Hubble diagram and inhomogeneities

Did you say average?

For an observable $Q(z, \theta)$, I can define:

- ensemble average $\langle Q \rangle$
- directional average $\langle Q \rangle_{\Omega} = \frac{1}{4\pi} \int_{\rm skv}^{\bullet} Q \ {\rm d}\Omega$
- area average $\langle Q \rangle_A = \frac{1}{A} \int_{\rm sky} Q \; {\rm d}A$

•

The role of lensing

The role of lensing

Source-averaging

$$\langle Q
angle_N = rac{1}{\mathcal{N}} \int_{
m sky} Q
ho_{
m s} d_{
m A}^2 H_{||}^{-1} {
m d}\Omega$$
 inhomogeneity lensing, peculiar velocities

Peculiar velocities

Redshift-space distortions

Bias of distance observables

(distance, magnitude, intensity, ...)

Bias of distance observables

Effective DE EoS

- In FLRW, the dark-energy equation of state w(z) influences the relation D(z)
- If you interpret a **biased** Hubble diagram with FLRW, the bias can translate into a **spurious** $w_{\rm eff}(z)$

Effective DE EoS

Question

How is the measurement of cosmological parameters influenced?

Bias of cosmological parameters

We consider three different kinds of surveys:

- type la supernovae (SNe) like LSST
- quasars (QSOs)
- gravitational waves (GWs) like eLISA

Bias of cosmological parameters

		$w_0w_a\mathrm{CDM}$			$\Lambda K \mathrm{CDM}$	
survey	D	$\Omega_{\mathrm{m}0}^* - \bar{\Omega}_{\mathrm{m}0}$	$w_0^* + 1$	w_a^*	$\Omega_{\mathrm{m}0}^* - \bar{\Omega}_{\mathrm{m}0}$	Ω_{K0}^*
SNIa	$d_{ m L}$	-4.5×10^{-4}	4.3×10^{-4}	4.6×10^{-3}	-2.7×10^{-4}	4.7×10^{-4}
	$\mid m \mid$	-6.1×10^{-4}	5.4×10^{-4}	7.0×10^{-3}	4.9×10^{-5}	-1.2×10^{-4}
	I	-2.0×10^{-3}	2.6×10^{-3}	1.7×10^{-2}	1.0×10^{-3}	-1.7×10^{-3}
QSOs	$d_{ m L}$	-9.0×10^{-4}	-9.7×10^{-4}	2.0×10^{-2}	-1.1×10^{-3}	2.4×10^{-3}
	m	-5.2×10^{-4}	4.0×10^{-5}	8.4×10^{-3}	-5.3×10^{-4}	1.0×10^{-3}
	I	-6.0×10^{-3}	8.0×10^{-3}	5.1×10^{-2}	5.9×10^{-3}	-9.3×10^{-3}
GWs	$d_{ m L}$	-1.0×10^{-3}	-2.7×10^{-3}	3.0×10^{-2}	-1.4×10^{-3}	3.1×10^{-3}
	$\mid m \mid$	-6.0×10^{-4}	-4.6×10^{-4}	1.2×10^{-2}	-7.2×10^{-4}	1.5×10^{-3}
	I	-3.3×10^{-6}	3.7×10^{-5}	-1.2×10^{-4}	-2.2×10^{-5}	4.8×10^{-5}

- starred parameters are the best fit of mock data
- barred parameters are the background

Conclusions

- When interpreting data, be careful with the notion of average that you use
- The bias of the Hubble diagram due to inhomogeneities is smaller than 10^{-3}
- The impact on parameter inference is small...
- ...but it must absolutely be taken into account for direct measurements of w(z)

謝謝

Thanks

Ngiyabonga