How does the large-scale structure bias the Hubble diagram? #### **Pierre Fleury** University of Cape Town University of the Western Cape Presentation based on [1611.soon] with C. Clarkson, R. Maartens, and O. Umeh. #### Hubble diagram and inhomogeneities # Did you say average? For an observable $Q(z, \theta)$, I can define: - ensemble average $\langle Q \rangle$ - directional average $\langle Q \rangle_{\Omega} = \frac{1}{4\pi} \int_{\rm skv}^{\bullet} Q \ {\rm d}\Omega$ - area average $\langle Q \rangle_A = \frac{1}{A} \int_{\rm sky} Q \; {\rm d}A$ • # The role of lensing # The role of lensing # Source-averaging $$\langle Q angle_N = rac{1}{\mathcal{N}} \int_{ m sky} Q ho_{ m s} d_{ m A}^2 H_{||}^{-1} { m d}\Omega$$ inhomogeneity lensing, peculiar velocities ### Peculiar velocities ### Redshift-space distortions #### Bias of distance observables (distance, magnitude, intensity, ...) #### Bias of distance observables ### Effective DE EoS - In FLRW, the dark-energy equation of state w(z) influences the relation D(z) - If you interpret a **biased** Hubble diagram with FLRW, the bias can translate into a **spurious** $w_{\rm eff}(z)$ ### Effective DE EoS #### Question How is the measurement of cosmological parameters influenced? ### Bias of cosmological parameters We consider three different kinds of surveys: - type la supernovae (SNe) like LSST - quasars (QSOs) - gravitational waves (GWs) like eLISA ### Bias of cosmological parameters | | | $w_0w_a\mathrm{CDM}$ | | | $\Lambda K \mathrm{CDM}$ | | |--------|---------------|---|-----------------------|-----------------------|---|-----------------------| | survey | D | $\Omega_{\mathrm{m}0}^* - \bar{\Omega}_{\mathrm{m}0}$ | $w_0^* + 1$ | w_a^* | $\Omega_{\mathrm{m}0}^* - \bar{\Omega}_{\mathrm{m}0}$ | Ω_{K0}^* | | SNIa | $d_{ m L}$ | -4.5×10^{-4} | 4.3×10^{-4} | 4.6×10^{-3} | -2.7×10^{-4} | 4.7×10^{-4} | | | $\mid m \mid$ | -6.1×10^{-4} | 5.4×10^{-4} | 7.0×10^{-3} | 4.9×10^{-5} | -1.2×10^{-4} | | | I | -2.0×10^{-3} | 2.6×10^{-3} | 1.7×10^{-2} | 1.0×10^{-3} | -1.7×10^{-3} | | QSOs | $d_{ m L}$ | -9.0×10^{-4} | -9.7×10^{-4} | 2.0×10^{-2} | -1.1×10^{-3} | 2.4×10^{-3} | | | m | -5.2×10^{-4} | 4.0×10^{-5} | 8.4×10^{-3} | -5.3×10^{-4} | 1.0×10^{-3} | | | I | -6.0×10^{-3} | 8.0×10^{-3} | 5.1×10^{-2} | 5.9×10^{-3} | -9.3×10^{-3} | | GWs | $d_{ m L}$ | -1.0×10^{-3} | -2.7×10^{-3} | 3.0×10^{-2} | -1.4×10^{-3} | 3.1×10^{-3} | | | $\mid m \mid$ | -6.0×10^{-4} | -4.6×10^{-4} | 1.2×10^{-2} | -7.2×10^{-4} | 1.5×10^{-3} | | | I | -3.3×10^{-6} | 3.7×10^{-5} | -1.2×10^{-4} | -2.2×10^{-5} | 4.8×10^{-5} | - starred parameters are the best fit of mock data - barred parameters are the background ### Conclusions - When interpreting data, be careful with the notion of average that you use - The bias of the Hubble diagram due to inhomogeneities is smaller than 10^{-3} - The impact on parameter inference is small... - ...but it must absolutely be taken into account for direct measurements of w(z) # 謝謝 Thanks Ngiyabonga