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Did you say average?
For an observable            , I can define:                         Q(z,✓)

hQi• ensemble average 

• directional average 

• area average 

• …
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The role of lensing
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Source-averaging

inhomogeneity 
of sources in space

lensing, 
peculiar velocities RSD
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Peculiar velocities

observer while R
2

has the opposite. Because peculiar velocities add to the Hubble flow,
this means that R

1

is actually farther than R
2

, d
A

(R
1

) > d
A

(R
2

), and thus corresponds
to a larger area A

1

> A
2

, where potentially more sources are present. This phenomenon
is sometimes called “Doppler lensing”, and its cross-correlation with galaxy number
counts has recently been suggested as a novel cosmological observable [86].

Redshift-space distortions. The physical phenomena a↵ecting redshifts have also an im-
pact, via their longitudinal gradient, on the conversion between the redshift width of a
bin and the corresponding physical depth. This is illustrated in Fig. 4 in the case of
peculiar velocities: a faster longitudinal expansion H|| implies a larger ratio between the
redshift separation �z and distance separation �` of sources. Note that all the other
corrections to the redshift (SW, ISW, . . . ) are also accounted for by H||, because this
local expansion is defined with respect to the rest frame of the sources, a coordinate
system for which any e↵ect on the redshift is seen as a velocity.
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Figure 4: E↵ect of peculiar velocities on the relation between redshift space and physical
space. Left panel : e↵ect of peculiar velocities on the geometry of an iso-z surface in physical
space (thick solid line). The dotted line corresponds to an iso-D surface with respect to the
observer, or equivalently to the iso-z surface in a FLRW model. Right panel : idem but for
two iso-z surfaces, illustrating the relation between the local longitudinal expansion rate H||
and the physical thickness �` of a redshift bin �z.

Finally, it is important emphasise the assumed conditions under which the expres-
sion (2.12) for hD(z)iN to match the best-fit D⇤(z) of an experimental Hubble diagram.

Unbiased uncertainties. In eq. (2.6) we did not take into account the fact that each data
point (zi, Di) is weighted by the inverse square of its uncertainty 1/�2

i . This is justified
if � is a function of z only, which is not necessarily the case. We however still recover
eq. (2.6) if the uncertainties are unbiased, i.e. if they do not favour deviations of D
towards particular a particular direction. Astrophysical phenomena are likely to produce
such a bias.
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Bias of distance observables

Comprehensive and balanced sky coverage. The fact that h· · ·iN involves an integral
over the whole sky implicitly assumes that the survey to which it is compared also
covers the whole sky, instead of focusing on a given region as it is currently the case for
most SN surveys [6]. In the latter situation, one has to multiply the integration kernel
by (d⌧

obs

/d⌦)(✓), representing the fraction of observation time spent in the direction ✓.

Large number of sources. The transition (2.8) from a discrete sum to an integral requires
to have a large number of sources, so that the sky can be safely divided into small
enough patches where the distance-redshift can be considered mostly homogeneous. The
impact of increasing the size of such patches can be observed in Fig. 5 of ref. [87].

3 Bias of distance observables

This section is dedicated to the computation of the bias of source-averaged distance indi-
cators hDiN at second order in cosmological perturbations. We remind the reader that D
can stand for angular or luminosity distance, luminous intensity (sometimes called flux), or
magnitude. What we call bias here is the di↵erence between hD(z)iN , i.e. the observed
average distance-redshift relation, and the standard D̄(z) predicted by an unperturbed FLRW
model with the same cosmological parameters. In other words, such a bias quantifies the error
that one makes when fitting the Hubble diagram with the standard relation D̄(z).

In what follows, we will always consider the fractional bias defined as

�D ⌘ hDiN � D̄

D̄
=

⌧
D � D̄

D̄

�

N

⌘ h�DiN , (3.1)

except when D represents the magnitude m, which is already a logarithmic quantity, so that
we rather use �m ⌘ m� m̄ and �m ⌘ h�miN in that case. Furthermore, because we do not
know what is the actual spacetime geometry of the Universe but only its statistical properties,
the only quantity that we can predict is the ensemble average h�Di of �D, i.e. its average
over multiple realisation of the Universe. Note that, as extensively discussed in ref. [84], it is
crucial to take this ensemble average after source-averaging, since they do not commute in
general.

3.1 Calculation at second order

3.1.1 Preliminaries

We aim at using the results of ref. [77, 78], which provided a comprehensive analysis of light
propagation up to second order in cosmological perturbations, and determined the expression
of the angular distance-redshift relation d

A

(z) at that order. The first step therefore consists
in expressing �D in terms of this result. We thus consider D a function of the angular
distance d

A

, so that, expanding D(d̄
A

+ �d
A

) at second order yields

�D = ↵�d
A

+ �(�d
A

)2 (3.2)

with

↵ ⌘ d̄
A

D̄

dD

dd
A

and � ⌘ 1

2

d̄2
A

D̄

d2D

dd
A

2

, (3.3)

except, again, when D = m in which case eq. (3.2) still holds but with slightly di↵erent
definitions for ↵ and � (remove D̄). Table 1 lists the values of ↵ and � associated with the
most commonly used distance indicators.
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distance observable 
(distance, magnitude, intensity, …) value in FLRW



Bias of distance observables
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Effective DE EoS

w(z)• In FLRW, the dark-energy equation of state  
influences the relation  

• If you interpret a biased Hubble diagram with FLRW,  
the bias can translate into a spurious

D(z)

we↵(z)



Effective DE EoS
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Question 

How is the measurement of 
cosmological parameters influenced?



Bias of cosmological parameters
We consider three different kinds of surveys: 
• type Ia supernovae (SNe) like LSST 
• quasars (QSOs) 
• gravitational waves (GWs) like eLISA 
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Bias of cosmological parameters

w
0

waCDM ⇤KCDM
survey D ⌦⇤

m0

� ⌦̄
m0

w⇤
0

+ 1 w⇤
a ⌦⇤

m0

� ⌦̄
m0

⌦⇤
K0

SNIa
d
L

�4.5⇥ 10�4 4.3⇥ 10�4 4.6⇥ 10�3 �2.7⇥ 10�4 4.7⇥ 10�4

m �6.1⇥ 10�4 5.4⇥ 10�4 7.0⇥ 10�3 4.9⇥ 10�5 �1.2⇥ 10�4

I �2.0⇥ 10�3 2.6⇥ 10�3 1.7⇥ 10�2 1.0⇥ 10�3 �1.7⇥ 10�3

d
L

�9.0⇥ 10�4 �9.7⇥ 10�4 2.0⇥ 10�2 �1.1⇥ 10�3 2.4⇥ 10�3

QSOs m �5.2⇥ 10�4 4.0⇥ 10�5 8.4⇥ 10�3 �5.3⇥ 10�4 1.0⇥ 10�3

I �6.0⇥ 10�3 8.0⇥ 10�3 5.1⇥ 10�2 5.9⇥ 10�3 �9.3⇥ 10�3

GWs
d
L

�1.0⇥ 10�3 �2.7⇥ 10�3 3.0⇥ 10�2 �1.4⇥ 10�3 3.1⇥ 10�3

m �6.0⇥ 10�4 �4.6⇥ 10�4 1.2⇥ 10�2 �7.2⇥ 10�4 1.5⇥ 10�3

I �3.3⇥ 10�6 3.7⇥ 10�5 �1.2⇥ 10�4 �2.2⇥ 10�5 4.8⇥ 10�5

Table 2: Cosmological parameters ⌦⇤ fitted from a biased Hubble diagram D(z), depending
on the distance indicator D (luminosity distance d

L

, magnitude m, or intensity I), for three
di↵erent kinds of survey (SNIa, QSOs, GWs), and with two di↵erent cosmological models
(w

0

waCDM or ⇤KCDM). We highlighted the least biased distance indicator for each survey.

equation of state can have order-unity departures from w = �1 at high redshift. This apparent
discrepancy can be understood by noticing that it is impossible to reproduce the redshift
evolution of w

e↵

as seen in Fig. 7 with the parametrisation of eq. (4.10).
It is interesting to note that each survey has a di↵erent least biased distance indicator:

luminosity distance for SNIa, magnitude for QSOs (although the di↵erence between distance
and magnitude is very small) and intensity for GWs. It is easy to understand this result
by comparing �D(z) of Fig. 6 with the survey’s redshift distributions p(z) of Fig. 8. The
distributions of both SNIa and QSOs peak around z = 0.5 � 1, which is contained in the
small window where |�I | > |�d

A

|, |�m|. On the contrary, the GW distribution peaks at
much higher redshift, where |�I | < |�d

A

|, |�m| as it is free from gravitational lensing. It was
therefore expected that the biases weighted by the redshift distributions would lead to such
results.

4.3 How to remove the bias in practice?

Even though this bias of the Hubble diagram due to cosmological perturbations turns out to
be relatively small, it is still a systematic e↵ect that will eventually need to be corrected as the
precision of observations increases. There are in practice two possibilities to get rid of the bias.
The brute-force idea consists in calculating it for each distance indicator and systematically
subtracting it from the observations. This may require to establish fitting formulae for �D

for any set of cosmological parameters, in order to improve computing e�ciency.
Another approach, approximate but completely free and less model-dependent, consists

in choosing the right distance indicator to plot and fit the Hubble diagram at hand. As we
can see from table 2, in the case of GW choosing to fit I instead of d

L

allows one reduce
the bias by two orders of magnitude, which is a significant gain. More clever choices of the
quantities ↵,� can further reduce the bias if needed.

5 Conclusion

In this article, we have investigated how the inhomogeneity of the Universe, modelled by the
cosmological perturbation theory, biases the distance-redshift relation probed by the Hubble
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• starred parameters are the best fit of mock data  
• barred parameters are the background



Conclusions
• When interpreting data, be careful with the notion 

of average that you use 

• The bias of the Hubble diagram due to 
inhomogeneities is smaller than  

• The impact on parameter inference is small… 

• …but it must absolutely be taken into account for 
direct measurements of

10�3

w(z)
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