Numerical Study Galactic Cosmic Ray Modulation Near the Heliopause

Xi Luo(罗熙) and Marius Potgieter

Center for Space Research

North-West University

Outline

Cosmic Ray Modulation Backgroud

- Cosmic Ray Modulation Model Based on the Global MHD heliosphere Data
- Study Galactic Cosmic Ray Modulation near the Heliopause(HP)

Conclusions

Voyager Missions

• Voyager Mission, Lauched in 1977, farthest manmade spacecraft.

Heliospace

The heliosphere

•Solar wind interacts with the interstellar medium, forming a blown bubble called heliosphere.

- •Termination Shock(Solar wind speed largely decrease.)
- •Heliosheath(region between termination shock and heliopause)
- •Heliopause(boundary between solar wind and interstellar medium)

Cosmic Rays from the Galaxy

 Cosmic ray Particles with energy below about 10 GeV are subject to solar modulation

Cosmic Ray Modulation Observed From Earth

Cosmic Ray Modulation Observed From Space

Transport equation for the transport, modulation and acceleration of cosmic rays in the heliosphere

$$\frac{\partial f}{\partial t} = \nabla \cdot \left[\mathbf{K} \cdot \nabla f \right] - \mathbf{V} \cdot \nabla f - \left\langle \mathbf{v}_D \right\rangle \cdot \nabla f + \frac{1}{3} \left(\nabla \cdot \mathbf{V} \right) \frac{\partial f}{\partial \ln p} + Q(r, p, t)$$

Time-dependent, pitch-angle-averaged distribution function Diffusion Convection with solar wind Particle Drifts Adiabatic energy changes Any local source

Voyager observations of >70 MeV GCR intensity

Some Questions

- Is heliopause the boundary for cosmic ray modulation as we set it in the computer simulation? What causes the radial flux jump as observed by Voyager 1?
- Does Voyager 1 observe the cosmic rays' interstellar spectrum, since it crossed HP in Aug. 2012?

My work is to use numerical method to contribute our answers for these questions.

Cosmic ray modulation in a realistic Global MHD heliosphere

Global Heliosphere Simulation-MHD Simulation Results

The interplanetary magnetic field and solar wind speed data from MHD simulation. The left panel shows the magnetic field magnitude in the X-Z plane; while the right panel shows the solar wind speed in the same plane.

Numerical Method For the transport Equation- Markov Stochastic Method

Cosmic Ray transport equation is equivalent to the following Ito Stochastic Differential Equations

$$d\mathbf{\bar{x}} = \sqrt{2\mathbf{\bar{\vec{k}}}} \cdot d\mathbf{\bar{w}}(s) + (\nabla \cdot \mathbf{\bar{\vec{k}}} - \mathbf{\bar{V}}_{sw} - \mathbf{\bar{V}}_{d})ds$$
$$dp = \frac{1}{3}\nabla \cdot \mathbf{\bar{V}}_{sw}pds$$

Demonstration of solving the cosmic ray equation in 1-D case.

dW satisfies a Wiener process, which is a nonstationary Markov process having a Gaussian Distribution.

$$p(dw_i) = \frac{1}{\sqrt{2\pi dt}} e^{[-\frac{(dw_i)^2}{2dt}]}$$

Gaussian distribution Random Number with standard deviation of dt

Cosmic ray modulation in a realistic Global MHD heliosphere Incorporating MHD data into cosmic ray transport code **The MHD simulation** SW**Diffusion Tensor Drift Speed** $\vec{\vec{K}} = \kappa_{\perp} \vec{\vec{I}} + (\kappa_{\parallel} - \kappa_{\perp}) \hat{b} \hat{b}$ Solar Wind Speed $\left| \vec{V}_d \right| = \frac{pv}{3a} \vec{\nabla} \times \left(\frac{B}{R^2} \right) \right|$ $\kappa_{\parallel} = \left(\kappa_{\parallel}\right)_{0} \beta \left(\frac{p}{1GeVc^{-1}}\right)^{0.5} \left(\frac{B_{e}}{B}\right)$ SW $\kappa_{\perp} = (\kappa_{\perp})_0 \beta (\frac{p}{1 Gevc^{-1}})^{0.5} (\frac{B_e}{B})$

$$d\mathbf{\bar{x}} = \sqrt{2\mathbf{\bar{\vec{k}}}} \cdot d\mathbf{\bar{w}}(s) + (\nabla \cdot \mathbf{\bar{\vec{k}}} - \mathbf{\bar{V}}_{sw} - \mathbf{\bar{V}}_{d})ds$$
$$dp = \frac{1}{3}\nabla \cdot \mathbf{\bar{V}}_{sw}pds$$

Voyager observations of >70 MeV GCR intensity

Setting simulation model: Magnifying Diffusion Coefficients ratio

Motivation: the fact that parallel diffusion should be much more effective than the perpendicular diffusion in the outer heliosheath.

Simulation Results by Magnifying Diffusion Coefficients ratio

Simulation Results for different directions

There is still jump along the Voyager 2 direction. Based on the location of this jump, the HP crossing time of Voyager 2 can be estimated.

$$time = [(radius_{MHD} - 19AU) - 83.7AU] / 3.3year + 2007.66 = 2017.14$$
$$HP_{V2} = 134AU$$

Study GCR modulation near the HP Modulation Boundary: Heliopause

Diffusion Coefficients affects the radial gradient beyond the HP.

There is seldom modulation exists(<0.1% per AU) if using the diffusion coefficients sets inferred from Voyager 1 CR observation.

Conclusions

Study Galactic Cosmic Ray Modulation near the Heliopause(HP)

- Cosmic Ray intensity jumps as the parallel diffusion coefficient and the ratio of the diffusion coefficients are magnified.
- There is still jump along the Voyager 2 direction. Based on the location of this jump, the HP crossing time of Voyager 2 can be estimated.
- There is seldom modulation exists if using the diffusion coefficients sets inferred from Voyager 1 CR observation.
- For cosmic ray particles arriving at the assumed Voyager
 1 location, most of them entering the tail region and
 diffuse along spiral line to the nose region.

Solar wind velocity profiles in the heliosphere

