Intensity Mapping of Hα, Hβ, [OII] and [OIII] lines at z<5

Yan Gong 巩岩 (NAOC)

Durban, 11/23/2016

arXiv:1610.09060; Collaborators: Asantha Cooray, Marta B. Silva, Michael Zemcov, Chang Feng, Mario G. Santos, Olivier Dore, Xuelei Chen

- Resolve individual galaxies
- Bright galaxies
- Low redshift
- Time-consuming

Galaxy Survey

credit: Andrew Pontzen/Fabio Governato

- Measure cumulative emission
- Faint galaxies
- High redshift
- Time-saving

Intensity Mapping

$H\alpha$, $H\beta$, [OII] and [OIII] emission lines as IM tracers

http://www.open.edu/openlearn/ocw/mod/oucontent/view.php?printable=1&id=2462

Line luminosity function

 $A_{\rm H\alpha} = 1.0 \text{ mag}, A_{\rm [OIII]} = 1.32 \text{ mag}, A_{\rm [OII]} = 0.62 \text{ mag}, \text{ and } A_{\rm H\beta} = 1.38$

Line mean intensity and power spectrum

• Line mean intensity

$$\bar{I}_{\nu}(z) = \int_{L_{\min}}^{L_{\max}} dL \, \Phi(L) \frac{L}{4\pi D_L^2} \, y(z) D_A^2 \qquad \text{(For LFs)}$$

$$\bar{I}_{\nu}(z) = \int_{M_{\rm min}}^{M_{\rm max}} dM \frac{dn}{dM} \frac{L_{\rm line}(M,z)}{4\pi D_{\rm L}^2} y(z) D_{\rm A}^2 \quad \text{(For SFR)}$$

• Line intensity power spectrum:

$$P_{\text{line}}^{\text{clus}}(k,z) = \bar{b}_{\text{line}}^2 \bar{I}_{\text{line}}^2 P_{\delta\delta}(k,z)$$
 (Clustering power)

$$P_{\rm line}^{\rm shot}(z) = \int_{M_{\rm min}}^{M_{\rm max}} dM \frac{dn}{dM} \left[\frac{L_{\rm line}}{4\pi D_{\rm L}^2} y(z) D_{\rm A}^2 \right]^2 \quad \text{(Shot-noise power)}$$

$$\bar{b}_{\text{line}}(z) = \frac{\int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{dn}{dM} L_{\text{line}} b(M, z)}{\int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{dn}{dM} L_{\text{line}}} \qquad \text{(line bias)}$$

Detectability

SPHEREx experiment

Credit: http://spherex.caltech.edu/

A small NASA space explore mission

SPHEREx instrument parameters

Telescope Effective Aperture	20 cm
Pixel Size	6.2" x 6.2"
Field of View	2 x (3.5° x 7.0°); dichroic
Resolving Power and Wavelength Coverage	λ= 0.75- 4.18 μm; R=41.4 λ= 4.18 - 5.00 μm; R=135
Arrays	2x Hawaii-2RG 2.5 μm 2x Hawaii-2RG 5.3 μm
Point Source Sensitivity	18.4 AB mag (50) per frequency bin referenced at 2 μm . Sensitivity has 380% total margin to science requirement
Cooling	All-Passive
2.5 µm Array and Optics Temperature	80K
5.3 µm Array Temperature	55K
Payload Mass	68.7 kg

http://spherex.caltech.edu/

• Foreground line contamination:

$$\begin{split} P_{\text{obs}}(k,z) &= P_s(k,z) + \sum_{i=1}^{N} P_f^{p,i}(k_f,z) \quad \text{(Total power spectrum)} \\ P_f^p(k_f,z) &= A_{\perp}^2 A_{\parallel} P_f(k_f,z_f) \quad \text{(Foreground line power spectrum)} \\ k &= \sqrt{k_{\perp}^2 + k_{\parallel}^2} \quad k_f = \sqrt{A_{\perp}^2 k_{\perp}^2 + A_{\parallel}^2 k_{\parallel}^2} \\ A_{\perp} &= r_s/r_f \quad A_{\parallel} = y_s/y_f \end{split}$$

• Detected Signal to Noise Ratio (SNR):

$$\begin{split} \Delta P_{\text{line}}(k)^2 &= \frac{\left[P_{\text{line}}(k) + P_N^{\text{line}}(k)\right]^2}{N_m(k)} \quad \text{(Variance of the power spectrum)} \\ P_N^{\text{line}}(k) &= \frac{V_{\text{pix}} \sigma_{\text{pix}}^2}{t_{\text{pix}}} \quad \text{(noise power spectrum)} \\ \text{SNR} &= \sqrt{\sum_{k \text{ bin}} \left[\frac{P_{\text{line}}(k)}{\Delta P_{\text{line}}(k)}\right]^2} \end{split}$$

SNRs, flux cuts, and % of removed pixels for SPHEREx

Line		$z \sim 1.0$	$z \sim 1.4$	$z \sim 1.8$	$z \sim 2.2$	$z \sim 2.7$	$z \sim 3.3$	$z \sim 4.0$	$z \sim 4.8$
$\mathrm{H}\alpha$	SNR	32.9	44.0	33.6	29.4	39.6	20.0	7.1	1.3
	flux cut (W/m^2)	-	-	-	-	-	-	-	-
	% of rem. pix.	-	-	-	-	-	-	-	-
[OIII]	SNR	18.6	13.0	19.7	14.4	11.5	4.8	2.6	0.5
	flux cut (W/m^2)	2.3×10^{-22}	1.4×10^{-22}	8.4×10^{-23}	6.0×10^{-23}	2.4×10^{-23}	6.8×10^{-24}	2.8×10^{-24}	1.3×10^{-24}
	% of rem. pix.	3%	4%	5%	6%	10%	21%	42%	55%
[OII]	SNR	18.4	11.4	8.2	6.4	8.4	3.2	0.8	0.1
	flux cut (W/m^2)	2.4×10^{-22}	8.6×10^{-23}	4.0×10^{-23}	2.5×10^{-23}	9.9×10^{-24}	4.6×10^{-24}	2.4×10^{-24}	9.9×10^{-25}
	% of rem. pix.	3%	5%	9%	20%	32%	43%	53%	67%
${ m H}eta$	SNR	2.6	1.8	2.9	2.1	1.4	0.5	0.3	< 0.1
	flux cut (W/m^2)	4.4×10^{-23}	2.6×10^{-23}	1.3×10^{-23}	9.2×10^{-24}	5.2×10^{-24}	3.0×10^{-24}	1.6×10^{-24}	8.8×10^{-25}
	% of rem. pix.	12%	15%	21%	27%	38%	48%	65%	87%

- Ha is the best tracer (no strong interloper lines, SNR>7 at z<4)
- [OIII] is better than [OII] (SNR_[OIII]>11 and SNR_[OII]>8 at z<3)
- Hb is challenging to measure (strong contamination, SNR<3 for all z)

Cross correlation with 21-cm line

CHIME and Tianlai 21-cm experiments

CHIME and Tianlai specs

	CHIME	Tianlai	Unit
Survey area A_s	10000	10000	deg^2
Total int. time $t_{\rm tot}$	10^{4}	10^{4}	hour
Total bandwidth	400-800	400-1420	MHz
Redshift range	0.8 - 2.5	0.0 - 2.5	_
Sys. Temp. $T_{\rm sys}$	50	50	Κ
FoV N-S	$\sim \! 150$	$\sim \! 150$	\deg
FoV E-W	~ 1.9	~ 1.6	\deg
Cylinder size	100×20	120×15	m^2
Num. of cylinders	5	8	-
Tot. Collecting area	10000	14400	m^2
Num. of feeds	256×5	275×8	-
Freq. resolution $\Delta \nu$	~ 1	~ 0.1	MHz

• Cross power spectrum:

$$P_{\rm cross}^{\rm clus}(k,z) = \bar{b}_{21\rm cm} \bar{b}_{\rm line} \bar{T}_{21\rm cm} \bar{T}_{\rm line} P_{\delta\delta}(k,z) \quad \text{(Cross clustering power)}$$

$$P_{\rm cross}^{\rm shot} = \sqrt{P_{\rm line}^{\rm shot} P_{21\rm cm}^{\rm shot}} \quad \text{(Cross shot-noise power)}$$

$$P_{21\rm cm}^{\rm shot}(z) = \int_{M_{\rm min}}^{M_{\rm max}} dM \frac{dn}{dM} \left(\bar{T}_{21\rm cm} \frac{M_{\rm HI}}{\rho_{\rm HI}} \right)^2 \quad \text{(21-cm shot-noise power)}$$

$$\bar{b}_{21\rm cm}(z) = \frac{\int_{M_{\rm min}}^{M_{\rm max}} dM \frac{dn}{dM} M_{\rm HI} b(M,z)}{\rho_{\rm HI}} \quad \bar{T}_{21\rm cm}(z) = 248 \left(\frac{\Omega_{\rm HI}}{10^{-3}} \right) \left(\frac{h}{0.73} \right) \left(\frac{1+z}{1.8} \right)^{0.5} \\ \left[\frac{\Omega_M + \Omega_\Lambda (1+z)^{-3}}{0.37} \right]^{-0.5} \mu {\rm K}.$$

• Variance of the cross power spectrum:

$$(\Delta P_{\rm cross})^2 = \frac{P_{\rm cross}^2 + (P_{\rm line} + P_N^{\rm line})(P_{21\rm cm} + P_N^{21\rm cm})}{2N_m^{\rm cross}(k)}$$
(Variance)

$$P_N^{21\rm cm} = r_c^2 y(z) \frac{\lambda^2 T_{\rm sys}^2}{A_e t_k}$$
(21-cm noise power spectrum)

$$t_k = t_0 (A_e/\lambda^2) n(\mu_{\perp}) \qquad \mu_{\perp} = k \sin(\theta) r_c/2\pi$$

SNRs of SPHEREx \times CHIME and Tianlai

Line	21-cm expt.	$z = 1.0 \pm 0.2$	$z = 1.4 \pm 0.2$	$z = 1.8 \pm 0.2$	$z = 2.2 \pm 0.2$
$H\alpha$	×CHIME ×Tianlai	28.7	26.9	18.9	15.2
		50.8	50.1	20.0	22.0
[OIII]	×CHIME ×Tianlai	$\begin{array}{c} 25.3\\ 31.7\end{array}$	$\begin{array}{c} 16.7 \\ 21.6 \end{array}$	$17.8\\18.4$	$\begin{array}{c} 12.2 \\ 17.4 \end{array}$
[OII]	×CHIME ×Tianlai	$26.5 \\ 33.3$	$\begin{array}{c} 17.2 \\ 22.2 \end{array}$	$\begin{array}{c} 11.7\\ 15.8\end{array}$	8.8 12.4
${ m H}eta$	\times CHIME \times Tianlai	$10.4 \\ 12.6$	$\begin{array}{c} 6.8\\ 8.5\end{array}$	$7.8 \\ 10.5$	5.2 7.3

HIRAX has similar SNR; SKA1-mid as single dishes has smaller SNR (SNR~5.7 at z=1)

Cross correlation is a good method for extracting IM signal!

Constraints on SFRD(z) by SPHEREx

Error<7% at z<4, better than the measurements from galaxy LFs

Derived by Fisher matrix, no degeneracy between other parameters.

IM is a powerful tool to explore high-z Universe!

Thanks!