Gamma-Ray Diagnostics of the Extragalactic Background Light, Intergalactic Magnetic Fields, and New Physics

Markus Böttcher North-West University Potchefstroom South Africa

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

<u>Blazars</u>

- Class of AGN consisting of BL Lac objects and gammaray bright quasars
- Rapidly (often intra-day) variable

Quasar 30175 VLA 6cm image (c) NRAO 1996

Blazar Variability: Variability of PKS 2155-304

(Costamante et al. 2008)

VHE γ-ray and X-ray variability often closely correlated

VHE γ-ray variability on time scales as short as a few minutes!

<u>Blazars</u>

- Class of AGN consisting of BL Lac objects and gammaray bright quasars
- Rapidly (often intra-day) variable

Strong gamma-ray sources

Quasar 3C175 YLA 6cm image (c) NRAO 1996

Blazar Spectral Energy Distributions (SEDs)

Blazar Classification

High-frequency peaked BL Lacs (HBLs):

Low-frequency component from radio to UV/X-rays,

 $v_{sy} > 10^{15} \text{ Hz}$

often dominating the total power

High-frequency component from hard X-rays to highenergy gamma-rays

<u>Blazars</u>

- Class of AGN consisting of BL Lac objects and gammaray bright quasars
- Rapidly (often intra-day) variable

- Strong gamma-ray sources
- Radio and optical polarization
- Radio jets, often with superluminal motion

Quasar 30175 YLA 6cm image (c) NRAO 1996

Faster than the speed of light?

(The MOJAVE Collaboration)

Relativistic Beaming / Boosting

Detecting Gamma-Rays with Fermi

Gamma-Ray Blazars (FSRQs) easily visible out to redshift of ~ 3.

80.0 Vormalized number of sources **FSRQs** 0.07 0.06 Trace general AGN 0.05 and star-formation 0.04 0.03 history 0.02 0.01 00 0.5 2.5 1.5 Redshift 2 0.24 0.22 Vormalized number of sources 02 BLLacs 0.18 0.16 Visible primarily at lower redshift 0.14 0.12 (lower luminosity; negative 0 1 0.08 cosmological evolution) 0.06 0.04 0.02 0₀ 0.5 2.5 3 .5 Redshift 0.35 Vormalized number of sources 0.3 0.25 E 0.2 LSP-/ISP-/HSP-BLLacs 0.15 0.1 0.05 00 1.5 Redshift 2.5 0.5 2 3

(2nd LAT AGN Catalog: Ackermann et al. 2011)

<u>Detecting Very-High-Energy (> 100 GeV)</u> <u>Gamma-Rays with Cherenkov Telescopes</u>

Cherenkov light from secondary particles (muons, electrons, positrons) in air showers initiated by very-high-energy gamma-rays in the atmosphere.

H.E.S.S. High Energy Stereoscopic System

Khomas Highlands, near Windhoek, Namibia

The VHE Gamma-Ray Sky

- Over 140 VHE γ-ray sources
- Most extragalactic VHE sources are blazars

Progress of VHE Astronomy

<u>Gamma-Gamma Absorpton /</u> Pair production

The inverse process of pair annihilation can absorb γ -rays with energies E > 511 keV.

Threshold energy E_{thr} for a γ -ray interacting with a background photon field of photons with characteristic

e⁺ θ e⁻ ε_γ

photon energy E₁:

$$\epsilon_{\rm thr} \sim 1/\epsilon_1$$

$$\varepsilon = E_{ph}/(m_e c^2)$$

100 GeV – TeV photons are absorbed in intergalactic space by interacting with the Extragalactic Background Light (EBL)!

The Extragalactic Background Light (EBL)

- Carries the imprint of the star formation history of the Universe.
- Notoriously difficult to measure because of Galactic and solar-system foregrounds.
- Direct galaxy counts set lower limits; galaxy formation/evolution models needed to develop realistic estimates.
- Reasonably well known at low z, but very uncertain at high z.

Gamma-Gamma Absorption by the EBL

Franceschini et al. (2008)

=> Don't expect any VHE blazars at z > 0.5

Redshift Distribution 12 7 VHE blazars with unknown 10 redshifts! Number of VHE blazars 8 6 **Gravitationally Lensed** Blazar S3 0218+35 at z = 0.9442 0 0.2 0.3 0.5 0.8 0.1 0.4 0.6 0.7 0.9 0 Redshift z

VHE Gamma-Ray Blazars

Redshift Lower Limits from EBL Absorption

- Assumption: intrinsic VHE spectrum is not harder than extrapolation from GeV (Fermi)
- Apply EBL correction to Fermi extrapolation to match the observed VHE spectrum -> UL on z

More precise methods take into account curvature of intrinsic spectrum (e.g. from detailed SED modeling)

<u>PKS 1424+240 (z = ???)</u>

First TeV blazar detection prompted by Fermi: IBL with hard GeV γ -ray spectrum ($\alpha_{phot} = 1.73$)

-> Multiwavelength Observing Campaign in 2009

<u>Biggest problem for theory interpretation: Unknown z:</u> SIMBAD: **z = 0.16** (but no reference) Sbarufatti et al. (2005): Limit from non-detection of host galaxy: **z > 0.67**

Extrapolated Fermi spectrum + EBL absorption: z <~ 0.6

Model fits with pure SSC models for a variety of redshifts

PKS 1424+240

 Pure SSC models provide a reasonable fit; no EC component required.

 For larger redshift, increasing discrepancy with VHE γ-ray spectral index

→ Z

... or maybe not ...

0.2853

1525

Problems with EBL Absorption

Lowering EBL Absorption Effects

Lowering EBL Absorption Effects

Lowering EBL Absorption Effects

3) Inhomogeneous EBL (?)
=> "VHE-like" blazars
located preferentially behind
low-density lines of sight
(voids)

But not sufficient to solve EBL discrepancy: For PKS 1424+240: Δτ_{γγ} <~ 10 %

4.1×10⁻³

4.1×10⁻⁴

4.1×10⁻²

0.41 [TeV]

Intergalactic Cascading and Magnetic Fields

EBL-absorption of VHE γ -rays produces e⁺e⁻ pairs \rightarrow Compton scattering of EBL photons \rightarrow GeV (Fermi) γ -rays

Upper limits on GeV emission \rightarrow Lower limits on B

Intergalactic Cascading and Magnetic Fields

Gravitational Lensing of Gamma-Ray Blazars

G

What about γγ-absorption?

<u>γγ-Absorption in Gravitational</u> Lenses?

• Intervening Lensing Galaxies (Macrolensing):

yy-Absorption in Gravitational Lenses?

• Stars in Intervening Galaxies (Microlensing):

<u>yy-Absorption in Gravitational Lenses?</u>

• Stars in Intervening Galaxies (Microlensing):

<u>yy-Absorption in Gravitational Lenses?</u>

• Stars in Intervening Galaxies (Microlensing):

Gamma-Gamma Opacity

=> Gravitational lensing helps γ -rays avoid $\gamma\gamma$ -absorption!

<u>Summary</u>

- 1. The EBL carries the signature of the star formation history of the Universe, but is difficult to measure directly.
- 2. The EBL can be probed through its $\gamma\gamma$ -absorption effect on VHE γ -rays \rightarrow EBL absorption appears to be lower than predicted (from galaxy counts + galaxy evolution models).
- 3. Possible solutions: Cosmic-Ray induced γ -rays; ALP conversion; lowdensity LOS (not sufficient by itself).
- 4. EBL absorption pair cascading can be used to set lower limits on the Intergalactic Magnetic Field ($B_{IGMF} > 10^{-17}$ G).
- 5. Gravitational lensing may help expand the VHE γ -ray horizon; $\gamma\gamma$ -absorption by the radiation field of the lens will not interfere!

Superluminal Motion

Apparent motion at up to ~ 40 times the speed of light!

<u>Leptonic Blazar Model</u>

Hadronic Blazar Models

<u>Sources of External Photons</u> (↔ Location of the Blazar Zone)

Direct accretion disk emission (Dermer et al 1992, Dermer & Schlickeiser 1994) → d < few 100 – 1000 R_s

Optical-UV Emission from the BLR (Sikora et al. 1994) $\rightarrow d < \sim pc$

Infrared Radiation from the Obscuring Torus (Blazejowski et al. 2000) $\rightarrow d \sim 1 - 10s$ of pc

Synchrotron emission from slower/faster Black regions of the jet (Georganopoulos & Hole Kazanas 2003) \rightarrow d ~ pc - kpc

Spine – Sheath Interaction (Ghisellini & Tavecchio 2008)

 \rightarrow d ~ pc - kpc

Obscuring

Narrow Line Region

> Broad Line Region

> > Accre Disk

Leptonic and Hadronic Model Fits Along the Blazar Sequence

Leptonic and Hadronic Model Fits along the Blazar Sequence

3C454.3

(2nd LAT AGN Catalog: Ackermann et al. 2011)

VHE γ-Ray Blazars

	-			Name	Class	Z	Date
Name	Class	z	Date	1H 2356-309	HBL	0.165	04/2006
Mrk421	HBL	0.031	08/1992	RX J0648.7+1516	HBL	0.179	03/2010
Mrk501	HBL	0.034	01/1996	1ES 1218+304	HBL	0.182	05/2006
1ES 2344+514	HBL	0.044	07/1998	1ES 1101-232	HBL	0.186	04/2006
Mrk 180	HBL	0.045	09/2006	1ES 0347-121	HBL	0.188	08/2007
1ES1959+650	HBL	0.048	08/1999	RBS 0413	HBL	0.19	10/2009
AP Lib	LBL	0.049	07/2010	PKS 0447+439	HBL	0.20	12/2009
1ES 1727+502	HBL	0.055	11/2011	1ES 1011+496	HBL	0.212	09/2007
PKS 0548-322	HBL	0.069	07/2007	PKS 0301-243	HBL	0.26	07/2012
BL Lacertae	LBL	0.069	05/2005	1ES 0414+009	HBL	0.287	11/2009
PKS 2005-489	HBL	0.071	06/2005	S5 0716+714	LBL	0.318	04/2008
RGBJ0152+017	HBL	0.08	02/2008	1ES 0502+675	HBL	0.341	11/2009
SHBL J001355.9	HBL	0.095	09/2010	PG1553+114	HBL	0.35	03/2006
W Comae	IBL	0.102	08/2008	PKS 1510-089	FSRQ	0.36	03/2010
1ES 1312-423	HBL	0.108	12/2010	4C+21.35	FSRQ	0.432	06/2010
PKS 2155-304	HBL	0.116	06/1999	3C66A	IBL	0.444 ?	03/2008
RGB J0710+591	HBL	0.125	03/2009	RGB J0136+3905	HBL	> 0.4	07/2012
1H 1426+428	HBL	0.129	02/2002	3C279	FSRQ	0.536	06/2008
1ES 1215+303	LBL	0.130	01/2011	KUV 00311-1938	HBL	0.61(?)	07/2012
1ES 0806+524	HBL	0.138	02/2008	PKS1424+240	IBL	???	06/2009
1ES 0229+200	HBL	0.14	02/2006	1ES 0033+595	HBL	???	10/2011
1RXS J101015.9	HBL	0.142	12/2010	RGB J0521.8+2112	HBL	???	10/2009

SSC fit parameters for a variety of redshifts

Parameter	z = 0.05	z = 0.10	z = 0.16	z = 0.30	z = 0.40	z = 0.50	z = 0.70
L_{e} [10 ⁴³ erg/s]	1.60	4.12	8.07	18.9	29.2	47.1	88.8
L _B [10 ⁴³ erg/s]	1.66	5.47	12.2	31.1	45.9	49.8	66.2
ε _B	1.04	1.33	1.50	1.65	1.57	1.06	0.75
B [G]	0.37	0.31	0.30	0.24	0.25	0.18	0.14
D	15	18	20	30	35	45	60

 L_e = kinetic power in relativistic electrons

$$_{-B}$$
 = Poynting flux

 $\epsilon_B = L_B/L_e$ = magnetic-field equipartition fraction

D = Doppler factor

Fits for $z \ge 0.5$ require large Doppler factors