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Why do we care about gravitational lensing of the CMB?

Dark
Energy
68.3%
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@ The Cosmic Microwave Background Temperature and Polarisation
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CMB Temperature

TIMELINE OF THE UNIVERSE
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@ map is close to isotropic with temperature hot and cold spots at
0(1079)
@ rich structure of power spectrum allows us to detect effects of lensing
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Polarisation from Anisotropy

Thompson Scattering

@ quadruple anisotropy present in CMB at last scattering

@ Thompson Scattering results in linear polarisation
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CMB Polarisation E and B modes

E mode polarisation

o from Thompson Scattering

@ radial and tangential around N | / ‘/_\‘
temperature coldspots and IR e
hotspots 4 | N p—

B mode polarisation | /S N |

e from gravitational waves and N B0 N\ R N

lensed E modes - | | N

@ makes a 45° angle with the
E modes

Figure : E and B mode polarisation




Observations of CMB Temperature and Polarisation

Multipole moment, ¢
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Multipole ¢
Temperature Power Spectrum

E mode and TE power spectra from 2014
SPTPol collaboration paper
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@ Gravitational Lensing of the CMB
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Gravitational Lensing

Deflection Angle «

@ radiation from direction 7
has been deflected by &
@ a is a sum of many small
deflections
@ lensing remaps photons
T(h) = T(A+ad)
S—~—~ N——

lensed temp unlensed temp

v

Lensing Potential v

Figure : Deflection of light by mass.
The CMB photons undergo multiple
o a(h) = ﬁw(ﬁ) deflections adding up to &

e (n) is the 2D lensing
potential (from the 3D
matter distribution)




Gravitational Lensing

Unlensed CMB at the
Last Scattering Surface

N

Inhomogeneous universe
causes photon deflections

Observer

@ average deflection: 2 arcminutes
@ coherence scale: 2 degrees 10/30



Lensed CMB Temperature Power Spectrum

lensed

—_— unlensed
T(%) = T(%+4) = T(< + Vo) & T() + (Vo) - (VT ()
T~ T()— (D)o (IT(]))

convolution of gradients

@ peaks of power spectrum spread out

@ power transferred to large |
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© Reconstructing the Lensing Potential
@ Harmonic Space
@ Real Space
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Temperature Quadratic Estimator in Harmonic Space

Mode coupling due to lensing is related to v

o different Fourier modes of the unlensed CMB are uncorrelated
<TNT*(T=L)>7~ (L)

@ lensing induces mode coupling WhICh depends on the lensing potential

lensed unlensed potential  depends on ¢/
N =y N —
<TNT*T-0)>7 = P(L) T+ »(L) x (L) (1)

v

Ansatz for 1

A — 2
W= — [ IOTI-1)glD @)
~—— lensed temp  weighting

normalisation

o estimator normalised by N(L) to be unbiased i.e. < (L) >7= (L)
@ weighting function g(T, Z) minimises the variance




Harmonic Space Estimator

We can rewrite the estimator in terms of two filtered fields F; and F> as

M) = - N(lL) | 52 B ARVAE)

o F1(X) is related to the small-scale temperature anisotropies

e VF,(X) is related to the temperature gradient on large scales
F1(X) and VF,(X) correlated because on small scales the unlensed CMB is
a temperature gradient, and the small-scale anisotropies come from the
lensing potential dlsturbmg the gradient
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Figure : left: unlensed CMB; middle: Iensed CI\/IB right: difference due to lensing
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Why Real Space Estimators?

Harmonic space estimators

@ limitations when it comes to analysing actual experimental data

o implicitly rely on uniform full sky coverage to obtain the Fourier
transform

v
Real-space estimators

@ local estimators

@ may be sub-optimal
o helpful when analysing experimental data

e cope with pixels that have been removed from maps
e cope with non-uniform sky coverage
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Real Space Estimators - What to Estimate

@ we estimate the convergence kg and two shear components v; and v

0O 0|e|Q|@

convergence kg shear v shear 4

o cBB(H~0

@ lensing fields are large in scale compared to CMB anisotropies
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Real Space Estimators

Unlensed Position in terms of Lensed Position

o X = SX’ analogous to i = i’ + @ from earlier

o T(X')= T(SX') and similarly for polarisation

eS=¢e"=~Il+k

v

Lensed Fields in terms of Unlensed Fields

We use the above relations between lensed and unlensed position in the
Fourier Transform equations to obtain:

-

T(1) = det2(S) T(SY1)

E(T) = det™2(S)[E(T") + 2(7x cos(2y) — v+ sin(26)) B(7)]
B(T) = det™2(S)[B(7) — 2(7x cos(2¢1) — 74 sin(2¢1))E(T)]
7

where I/ = S~

m

and ¢y is the angular coordinate of 7 in polar coordinates.
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Real Space Estimators

For XY=TT, TE and EE, where XY (I) =< X*() Y (1) >, we find:

(":,XY :c,XY + Ko X f(c,XY) + v+ cos(2¢y) % g(c,XY) + x sin(2¢) x g(c,XY)

Quadratic Estimators for XY=TT, TE and EE

Ansatz for convergence estimator:

& 1 Tl v\ v/
RYY = Vss /d2/ XY~ | &2 (1) (3)
\H,O_/ lensed fields weighting

normalisation
Ansatz for shear estimator:

)= o [Exara{stomler o @

V45T %

lensed fields weighting

normalisation




Real Space Estimators

For Y=T or E:

— -

eYB(1) =< Y*(1)B(I) >= 2¢"E(1) [+ sin(2¢1) — 7 cos(2¢1)]

Quadratic Estimators for TB and EB

Ansatz for shear estimator:

AYB B 1 s [ sin(2d)
e} = e [eirasa{ooomlas. o ©

A+,

lensed fields weighting
normalisation
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Real Space Estimators - Implementation

where o denotes convolution.
Equivalent expressions can be found for the other estimators.
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Real Space Estimator and the Harmonic Space Estimator

Low-L (large-scale lensing field) limit of harmonic space estimator

o Taking the low-L limit of the harmonic space estimator (left) gives us
the inverse-variance weighting of the real space convergence and
shear estimators (right)

1 IS, N Na
li =y HS [ — ~ "Ko  aRS """+ ARS 6
Lino (2 ! Jw ( )) N,go—i-NfH_Klo + N,go-l-NﬁHfY—’— ( )

v
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@ Simulated Lensing Reconstructions
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Real Space Lensing Reconstructions - Convergence from

Temperature

@ contours represent input convergence, colour maps show
reconstructed convergence

Z'EI' Real Space Convergence Reconstruction
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Real Space Lensing Reconstructions - Convergence from

Temperature

@ contours represent input convergence, colour maps show
reconstructed convergence
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Real Space Lensing Reconstructions - Convergence from

Temperature

@ contours represent input convergence, colour maps show
reconstructed convergence

Z'EI' Real Space Convergence Reconstruction
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Real Space Lensing Reconstructions - Shear Plus

20TT Real Space Shear Plus Reconstruction ZEE Real Space Lensing Field Reconstruction Z%B Real Space Lensing Field Reconstruction

O s D)

J Ces v | Came &
@ @

1596 . ©=%( 18 & f

From left to right: TT, EE and EB shear plus reconstructions

EB Estimator

@ best reconstruction

@ no noise variance from unlensed B field
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Real Space Lensing Reconstructions - Convergence from

Temperature

107

Lensing Power Spectra - Real Space
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Improving High-L Reconstruction
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Conclusion

Applications of Lensing

@ mapping the distribution of matter

@ multiple estimators give reconstructions that can be compared

o apply to ACTPol maps

@ extend beyond slowly-varying lensing field approximation
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—200pK|

The End
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Real Space Lensing Reconstructions - Shear Plus

Noise for reference experiment similar to ACTPol

20'I'I' Real Space Shear Plus Reconstruction 20EE Real Space Shear Plus Reconstruction 20EB Real Space Shear Plus Reconstruction
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From left to right: TT, EE and EB shear plus reconstructions
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Polarisation from Anisotropy

Thompson Scattering

@ quadruple anisotropy present in CMB at last scattering

@ Thompson Scattering results in linear polarisation

polarized

74

hot hot

A

unpolarized

unpolarized
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Real Space Estimators -Squeezed Triangle Approximation

o || ~ |I'|, both large
(small scale CMB anisotropies)
where 7 and " are the unlensed and
= lensed wavevectors
o |[|=1|—T<<]l|
(large scale lensing potential)

2l

o large scale lensing fields (small L)

o slowly varying kg, v+ and vy«

So we will work with areas of the sky over which kg, 7+ and vy« are
approximately constant.
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Real Space Estimators

Unlensed Position in terms of Lensed Position

o X = SX’ analogous to i = i’ + @ from earlier

o T(X')= T(SX') and similarly for polarisation

eS=¢e"=~Il+k

v

Lensed Fields in terms of Unlensed Fields

We use the above relations between lensed and unlensed position in the
Fourier Transform equations to obtain:

-

T(1) = det2(S) T(SY1)

E(T) = det™2(S)[E(T") + 2(7x cos(2y) — v+ sin(26)) B(7)]
B(T) = det™2(S)[B(7) — 2(7x cos(2¢1) — 74 sin(2¢1))E(T)]
7

where I/ = S~

m

and ¢y is the angular coordinate of 7 in polar coordinates.
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Real Space Estimators - Lensed Spectra in terms of

Unlensed Spectra

For the unlensed spectra,
o we assume cBB(/) ~ 0 — we clearly need to extend our approach to
take primordial B modes into account
o cFB(1) =0 = cB(l) by parity considerations
We use the lensed fields to find the lensed power spectra.
For XY=TT, TE and EE, where XY (1) =< X*()Y(I) >, we find:

XY () =XV (1) [1 - m)(M + 2)]

dn[/]
dIn[XY (1)]

— V(1) (74 cos(2¢;) + 7 sin(2¢/)) dIn[/]

For Y =T or E:

- -

eB(1) =< Y*(NB(I) >= —2cE(I) [yx cos(2¢;) — 74 sin(2¢))]

¢BB(I) = 0| in our current approximation.
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Real Space Convergence Estimators

@ Ansatz for XY=TT, TE and EE:

R = A / KMV - ) & 0)

° Ngﬁy is the normalisation constant, found by assuming that the
estimator is unbiased, i.e. < /%3“/ >T= Ko

gXY(T) is a weighting function, found by minimising the variance

@ We subtract the unlensed power spectrum C,XY from the observed one
to isolate kg
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Real Space Shear Estimators for XY=TT, TE and EE

We multiply by cos(2¢4,) and sin(2¢) in the ansatz to isolate the v, and
Yx parts respectively:

() st e () (v

V57T %
where - Xy 2
xy _ 1 [ d7 XY XY () dIn[c*" (/)]
i T2 | (2r)2 dIn[/]
XY .
and FXY = vty if XY=TT or EE and
FTE 0!

= ETEMPH(ETT()+nT T () (EE(+nFE(D)
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Real Space Shear Estimators for XY= TB and EB

Can use ¢"B(/) and &EB(/) to find estimators for v, and 7. In the
following Y denotes either T or E

(ﬁ) - NYlB / (j;; ((CW(,) +CnYYEY(8)><nBB(/)>) g
(roso

\YB o1 (c"E()?

53 = | @ap (@) + Y (D) (nPB (1))

Where
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Real Space Estimators - Implementation

The convergence estimator g can be used to find #] " (X) in terms of
o the real space temperature field T(X)

o a filter K;?Z(—,T (which is related to the Fourier transform of the weight
function g "7 (1))

as

ATT( ) T()?)( /%7;7— © T)()?)— < T()?)( /%7;7— © T)()?) > unlensed (7)

where o denotes convolution.
Similar expressions can be found for 4]7(X) and 47 (%), and for the
polarisation and cross estimators.
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How good is our squeezed triangle approximation?
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Figure : Normalized cumulative x? (or equivalently N) as a function of /
integrated both from the left and from the right using the sensitivity and
resolution parameters for the ACT experiment

40/30



Which estimators are the best?

Best estimator depends on

experiment

The plot shows the deflection {:
signal (dd) and noise power 3
spectra of the quadratic
estimators and their minimum
variance (mv) combination. As
the sensitivity of the experiment
improves the best quadratic

estimator switches from TT to

E B 100¢ (b) Reference 3
. . .
o 10 100 1000

LL+1)CH 2
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Real Space Lensing Reconstructions - E mode Polarisation

ZEE Real Space Lensing Field Reconstruction

Z%E Real Space Lensing Field Reconstruction
T ; T
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Real Space Lensing Reconstructions - Convergence from

Temperature

107

Lensing Power Spectra - Real Space
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