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Why do we care about gravitational lensing of the CMB?
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CMB Temperature

map is close to isotropic with temperature hot and cold spots at
O(10−5)

rich structure of power spectrum allows us to detect effects of lensing
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Polarisation from Anisotropy

Thompson Scattering

quadruple anisotropy present in CMB at last scattering

Thompson Scattering results in linear polarisation

Figure : Linear Polarisation
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CMB Polarisation E and B modes

E mode polarisation

from Thompson Scattering

radial and tangential around
temperature coldspots and
hotspots

B mode polarisation

from gravitational waves and
lensed E modes

makes a 45◦ angle with the
E modes

Figure : E and B mode polarisation
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Observations of CMB Temperature and Polarisation

Figure : Planck’s CMB
Temperature Power Spectrum

E mode and TE power spectra from 2014
SPTPol collaboration paper
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Gravitational Lensing

Deflection Angle α

radiation from direction n̂
has been deflected by ~α

~α is a sum of many small
deflections

lensing remaps photons

T̃ (n̂)︸ ︷︷ ︸
lensed temp

= T (n̂ + ~α)︸ ︷︷ ︸
unlensed temp

Lensing Potential ψ

~α(n̂) = ~∇ψ(n̂)

ψ(n̂) is the 2D lensing
potential (from the 3D
matter distribution)

Figure : Deflection of light by mass.
The CMB photons undergo multiple
deflections adding up to ~α
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Gravitational Lensing

average deflection: 2 arcminutes
coherence scale: 2 degrees 10 / 30



Lensed CMB Temperature Power Spectrum

lensed︷ ︸︸ ︷
T̃ (~x) =

unlensed︷ ︸︸ ︷
T (~x + ~α) = T (~x + ~∇ψ) ≈ T (~x) + (~∇ψ) · (~∇T (~x))

T̃ (~l) ≈ T (~l)− (~lψ(~l)) ◦ (~lT (~l))︸ ︷︷ ︸
convolution of gradients

Effects of Lensing

peaks of power spectrum spread out

power transferred to large l

The unlensed (solid) and lensed
(dashed) power spectra of the CMB
temperature.

The unlensed (blue) and lensed
(purple) power spectra
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Temperature Quadratic Estimator in Harmonic Space

Mode coupling due to lensing is related to ψ

different Fourier modes of the unlensed CMB are uncorrelated

< T (~l )T ∗(~l − ~L) >T ≈ δD(~L )cTTl

lensing induces mode coupling which depends on the lensing potential

lensed︷ ︸︸ ︷
< T̃ (~l )T̃ ∗(~l − ~L) >T ≈

unlensed︷ ︸︸ ︷
δD(~L )cTTl +

potential︷︸︸︷
ψ(~L) ×

depends on cTTl︷ ︸︸ ︷
f (~l ,~L) (1)

Ansatz for ψ

ψ̂(~L) ≡ 1

N(~L)︸ ︷︷ ︸
normalisation

∫
d2~l

2π
T̃ (~l)T̃ ∗(~l − ~L)︸ ︷︷ ︸

lensed temp

g(~l ,~L)︸ ︷︷ ︸
weighting

(2)

estimator normalised by N(~L) to be unbiased i.e. < ψ̂(~L) >T= ψ(~L)

weighting function g(~l ,~L) minimises the variance
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Harmonic Space Estimator

We can rewrite the estimator in terms of two filtered fields F1 and F2 as

ψ̂(~L) = − 1

N(~L)

∫
d2~x

2π
e−i

~L·~x∇ · [F1(~x)∇F2(~x)]

F1(~x) is related to the small-scale temperature anisotropies
∇F2(~x) is related to the temperature gradient on large scales

F1(~x) and ∇F2(~x) correlated because on small scales the unlensed CMB is
a temperature gradient, and the small-scale anisotropies come from the
lensing potential disturbing the gradient

Figure : left: unlensed CMB; middle: lensed CMB; right: difference due to lensing
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Why Real Space Estimators?

Harmonic space estimators

limitations when it comes to analysing actual experimental data

implicitly rely on uniform full sky coverage to obtain the Fourier
transform

Real-space estimators

local estimators

may be sub-optimal

helpful when analysing experimental data

cope with pixels that have been removed from maps
cope with non-uniform sky coverage
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Real Space Estimators - What to Estimate

we estimate the convergence κ0 and two shear components γ+ and γ×

convergence κ0 shear γ+ shear γ×

Assumptions

cBB(l) ≈ 0

lensing fields are large in scale compared to CMB anisotropies
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Real Space Estimators

Unlensed Position in terms of Lensed Position

~x = S~x ′ analogous to n̂ = n̂′ + ~α from earlier

T̃ (~x ′) = T (S~x ′) and similarly for polarisation

S = eκ ≈ I + κ

Lensed Fields in terms of Unlensed Fields

We use the above relations between lensed and unlensed position in the
Fourier Transform equations to obtain:

T̃ (~l) = det−
1
2 (S)T (S−1~l)

Ẽ (~l) = det−
1
2 (S)[E (~l ′) + 2(γ× cos(2φl)− γ+ sin(2φl))B(~l ′)]

B̃(~l) = det−
1
2 (S)[B(~l ′)− 2(γ× cos(2φl)− γ+ sin(2φl))E (~l ′)]

where~l ′ = S−1~l and φl ′ is the angular coordinate of~l ′ in polar coordinates.

17 / 30



Real Space Estimators

For XY=TT , TE and EE , where c̃XY (l) =< X̃ ∗(~l)Ỹ (~l) >, we find:

c̃XYl =cXYl + κ0 × f (cXYl ) + γ+ cos(2φl)× g(cXYl ) + γ× sin(2φl)× g(cXYl )

Quadratic Estimators for XY=TT , TE and EE

Ansatz for convergence estimator:

κ̂XY0 =
1

NXY
κ̂0︸ ︷︷ ︸

normalisation

∫
d2~l

X̃ ∗(~l)Ỹ (~l)︸ ︷︷ ︸
lensed fields

−cXYl

 gXY
κ̂0

(l)︸ ︷︷ ︸
weighting

(3)

Ansatz for shear estimator:{
γ̂XY+

γ̂XY×

}
=

1

NXY
γ̂+,γ̂×︸ ︷︷ ︸

normalisation

∫
d2~l X̃ ∗(~l)Ỹ (~l)︸ ︷︷ ︸

lensed fields

{
cos(2φlL)
sin(2φlL)

}
gXY
γ̂+,γ̂×(l)︸ ︷︷ ︸
weighting

(4)
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Real Space Estimators

For Y=T or E :

c̃YB(l) =< Ỹ ∗(~l)B̃(~l) >= 2cYE (l) [γ+ sin(2φl)− γ× cos(2φl)]

Quadratic Estimators for TB and EB

Ansatz for shear estimator:{
γ̂YB+

γ̂YB×

}
=

1

NYB
γ̂+,γ̂×︸ ︷︷ ︸

normalisation

∫
d2~l Ỹ ∗(~l)B̃(~l)︸ ︷︷ ︸

lensed fields

{
sin(2φlL)
cos(2φlL)

}
gYB
γ̂+,γ̂×(l)︸ ︷︷ ︸
weighting

(5)
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Real Space Estimators - Implementation

where ◦ denotes convolution.
Equivalent expressions can be found for the other estimators.
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Real Space Estimator and the Harmonic Space Estimator

Low-L (large-scale lensing field) limit of harmonic space estimator

Taking the low-L limit of the harmonic space estimator (left) gives us
the inverse-variance weighting of the real space convergence and
shear estimators (right)

lim
L→0

(
1

2
LiLj ψ̂

HS(~L)

)
=

Nκ̂0

Nκ̂0 + Nγ̂+

κ̂RS0 +
Nγ̂+

Nκ̂0 + Nγ̂+

γ̂RS+ (6)
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Real Space Lensing Reconstructions - Convergence from
Temperature

contours represent input convergence, colour maps show
reconstructed convergence

κ0 from 1 map

κ0 from 1 map minus noise κ0 from 20 maps
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Real Space Lensing Reconstructions - Convergence from
Temperature

contours represent input convergence, colour maps show
reconstructed convergence

κ0 from 1 map κ0 from 1 map minus noise

κ0 from 20 maps
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Real Space Lensing Reconstructions - Convergence from
Temperature

contours represent input convergence, colour maps show
reconstructed convergence

κ0 from 1 map κ0 from 1 map minus noise κ0 from 20 maps
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Real Space Lensing Reconstructions - Shear Plus

From left to right: TT, EE and EB shear plus reconstructions

EB Estimator

best reconstruction

no noise variance from unlensed B field
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Real Space Lensing Reconstructions - Convergence from
Temperature
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Improving High-L Reconstruction
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Conclusion

Applications of Lensing

mapping the distribution of matter

multiple estimators give reconstructions that can be compared

Next Steps

apply to ACTPol maps

extend beyond slowly-varying lensing field approximation
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The End
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Real Space Lensing Reconstructions - Shear Plus

Noise for reference experiment similar to ACTPol

From left to right: TT, EE and EB shear plus reconstructions
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Polarisation from Anisotropy

Thompson Scattering

quadruple anisotropy present in CMB at last scattering

Thompson Scattering results in linear polarisation

Figure : Linear Polarisation
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Real Space Estimators -Squeezed Triangle Approximation

|~l | ≈ |~l ′|, both large
(small scale CMB anisotropies)
where ~l and ~l ′ are the unlensed and
lensed wavevectors

|~L| = |~l −~l ′| << |~l |
(large scale lensing potential)

large scale lensing fields (small L)

slowly varying κ0, γ+ and γ×

So we will work with areas of the sky over which κ0, γ+ and γ× are
approximately constant.
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Real Space Estimators

Unlensed Position in terms of Lensed Position

~x = S~x ′ analogous to n̂ = n̂′ + ~α from earlier

T̃ (~x ′) = T (S~x ′) and similarly for polarisation

S = eκ ≈ I + κ

Lensed Fields in terms of Unlensed Fields

We use the above relations between lensed and unlensed position in the
Fourier Transform equations to obtain:

T̃ (~l) = det−
1
2 (S)T (S−1~l)

Ẽ (~l) = det−
1
2 (S)[E (~l ′) + 2(γ× cos(2φl)− γ+ sin(2φl))B(~l ′)]

B̃(~l) = det−
1
2 (S)[B(~l ′)− 2(γ× cos(2φl)− γ+ sin(2φl))E (~l ′)]

where~l ′ = S−1~l and φl ′ is the angular coordinate of~l ′ in polar coordinates.
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Real Space Estimators - Lensed Spectra in terms of
Unlensed Spectra

For the unlensed spectra,

we assume cBB(l) ≈ 0 – we clearly need to extend our approach to
take primordial B modes into account
cEB(l) = 0 = cTB(l) by parity considerations

We use the lensed fields to find the lensed power spectra.
For XY=TT , TE and EE , where c̃XY (l) =< X̃ ∗(~l)Ỹ (~l) >, we find:

c̃XY (l) =cXY (l)

[
1− κ0

(
d ln[cXY (l)]

d ln[l ]
+ 2

)]
− cXY (l)(γ+ cos(2φl) + γ× sin(2φl))

d ln[cXY (l)]

d ln[l ]

For Y = T or E :

c̃YB(l) =< Ỹ ∗(~l)B̃(~l) >= −2cYE (l) [γ× cos(2φl)− γ+ sin(2φl)]

c̃BB(l) = 0 in our current approximation.
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Real Space Convergence Estimators

Ansatz for XY=TT , TE and EE :

κ̂XY0 =
1

NXY
κ̂0

A
∫

d2~l

(2π)2

(
X̃ ∗(~l)Ỹ (~l)− cXYl

)
gXY (l)

NXY
κ̂0

is the normalisation constant, found by assuming that the

estimator is unbiased, i.e. < κ̂XY0 >T= κ0

gXY (~l) is a weighting function, found by minimising the variance

We subtract the unlensed power spectrum cXYl from the observed one
to isolate κ0
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Real Space Shear Estimators for XY=TT , TE and EE

We multiply by cos(2φl) and sin(2φl) in the ansatz to isolate the γ+ and
γ× parts respectively:(

γ̂XY+

γ̂XY×

)
=

1

NXY
γ̂+,γ̂×

∫
d2~l

(2π)2
FXY

(
d ln[cXY (l)]

d ln[l ]

)(
cos(2φl)

sin(2φl)

)
X̃ ∗(~l)Ỹ (~l)

where

NXY
γ̂+γ̂× =

1

2

∫
d2~l

(2π)2
FXY cXY (l)

(
d ln[cXY (l)]

d ln[l ]

)2

and FXY = cXY (l)
(cXY (l)+nXY (l))2 if XY=TT or EE and

FTE = cTE (l)
(c̃TE (l))2+(cTT (l)+nTT (l))(cEE (l)+nEE (l))
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Real Space Shear Estimators for XY= TB and EB

Can use c̃TB(l) and c̃EB(l) to find estimators for γ+ and γ×. In the
following Y denotes either T or E(

γ̂YB+

γ̂YB×

)
=

1

NYB
γ̂+,γ̂×

∫
d2~l

(2π)2

(
cYE (l)

(cYY (l) + nYY (l))(nBB(l))

)
×

×
(

sin(2φl)

cos(2φl)

)
Ỹ ∗(~l)B̃(~l)

Where

NYB
γ̂+γ̂× =

∫
d2~l

(2π)2

(cYE (l))2

(cYY (l) + nYY (l))(nBB(l))
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Real Space Estimators - Implementation

The convergence estimator κ̂0 can be used to find κ̂TT0 (~x) in terms of

the real space temperature field T (~x)

a filter KTT
κ̂0

(which is related to the Fourier transform of the weight

function gTT (l))

as

κ̂TT0 (~x) = T (~x)(KTT
κ̂0
◦ T )(~x)− < T (~x)(KTT

κ̂0
◦ T )(~x) >unlensed (7)

where ◦ denotes convolution.
Similar expressions can be found for γ̂TT+ (~x) and γ̂TT× (~x), and for the
polarisation and cross estimators.
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How good is our squeezed triangle approximation?
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Figure : Normalized cumulative χ2 (or equivalently N) as a function of l
integrated both from the left and from the right using the sensitivity and
resolution parameters for the ACT experiment
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Which estimators are the best?

Best estimator depends on
experiment

The plot shows the deflection
signal (dd) and noise power
spectra of the quadratic
estimators and their minimum
variance (mv) combination. As
the sensitivity of the experiment
improves the best quadratic
estimator switches from TT to
EB.

41 / 30



Real Space Lensing Reconstructions - E mode Polarisation

Convergence, Shear Plus and Shear Cross Reconstructions from E mode
polarisation maps.
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Real Space Lensing Reconstructions - Convergence from
Temperature
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