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• E-modes vary spatially only parallel and 
perpendicular to polarization direction

• Density perturbations give E only, in 
linear theory

CMB Polarization
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Figure 1. A pure E Fourier mode (a), and a pure B mode (b).

example, consider the original COBE detection: although the key science was contained in the
two-point correlation function and power spectrum estimates, the actual real-space maps were
invaluable in convincing the world of the validity and importance of the results.)

Consideration of issues related to E/B separation is important in experiment design and
optimization as well. For example, the ambiguity in E/B separation significantly alters the
optimal tradeo� between sky coverage and noise per pixel in a degree-scale B mode experiment
[6].

2. Pure and ambiguous modes
The E/B decomposition is easiest to understand in Fourier space. For any given wavevector k,
define a coordinate system (x, y) with the x axis parallel to k, and compute the Stokes parameters
Q,U . An E mode contains only Q, while a B mode contains only U . In other words, in an E
mode, the polarization direction is always parallel or perpendicular to the wavevector, while in
a B mode it always makes a 45⇥ angle, as shown in Figure 1.

In a map that covers a finite portion of the sky, of course, the Fourier transform cannot be
determined with infinite k-space resolution. According to the Heisenberg uncertainty principle,
if the observed region has size L, an estimate of an individual Fourier mode with wavevector q
will be a weighted average of true Fourier modes k in a region around q of width |k�q| ⇥ L�1.
These Fourier modes will all point in slightly di�erent directions, spanning a range of angles
⇥ qL. Since the mapping between (Q,U) and (E, B) depends on the angle of the wavevector, we
expect the amount of E/B mixing to be of order qL. In particular, this means that the largest
scales probed by a given experiment will always have nearly complete E/B mixing. This is
unfortunate, since the largest modes probed are generally the ones with highest signal-to-noise
ratio. Typically, the noise variance is about the same in all Fourier modes detected by a given
experiment, while the signal variance scales as Cl, which decreases as a function of wavenumber.
(Remember, even a “flat” power spectrum is one with l2Cl ⇥ constant.)

One way to quantify the amount of information lost in a given experimental setup is to
decompose the observed map into a set of orthogonal modes consisting of pure E modes, pure
B modes, and ambiguous modes [7]. A pure E mode is orthogonal to all B modes, which means
that any power detected in such a mode is guaranteed to come from the E power spectrum.
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Effect of lensing: breaking statistical 
isotropy

• CMB still Gaussian but power spectrum 
locally distorted

convergence:

shear:

• Generation of B from E!
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TABLE I: Filters, fD

XX′(l1, l2)

D fD
EB(l1, l2) fD

TB(l1, l2) W B
D (l1, l2) W E

D (l1, l2)

a C̃EE
l1 sin 2(ϕl1

− ϕl2
) C̃TE

l1 sin 2(ϕl1
− ϕl2

) sin[2(ϕl2
− ϕL)] cos[2(ϕl2

− ϕL)]

ω 2C̃EE
l1 cos 2(ϕl1

− ϕl2
) 2C̃TE

l1 cos 2(ϕl1
− ϕl2

) 2 cos[2(ϕl2
− ϕL)] −2 sin[2(ϕl2

− ϕL)]

γ1 C̃TE
l1 sin 2(ϕL − ϕl2

) C̃TT
l1 sin 2(ϕL − ϕl2

) sin[2(ϕl1
− ϕL)] , cos[2(ϕl1

− ϕL)]

γ2 C̃TE
l1 cos 2(ϕL − ϕl2

) C̃TT
l1 cos 2(ϕL − ϕl2

) cos[2(ϕl1
− ϕL)] , − sin[2(ϕl1

− ϕL)]

f1 C̃EE
l1 sin 2(2ϕL − ϕl1

− ϕl2
) C̃TE

l1 sin 2(2ϕL − ϕl1
− ϕl2

) sin[2(2ϕl1
− ϕl2

− ϕL)] cos[2(2ϕl1
− ϕl2

− ϕL)]

f2 C̃EE
l1 cos 2(2ϕL − ϕl1

− ϕl2
) C̃TE

l1 cos 2(2ϕL − ϕl1
− ϕl2

) cos 2(2ϕl1
− ϕl2

− ϕL) − sin 2(2ϕl1
− ϕl2

− ϕL)

d1 C̃TE
l1 (l1σ) cos(ϕL + ϕl1

− 2ϕl2
) C̃TT

l1 (l1σ) cos(ϕL + ϕl1
− 2ϕl2

) −(l2σ) cos[ϕl1
+ ϕl2

− 2ϕl] −(l2σ) sin[ϕl1
+ ϕl2

− 2ϕL]

d2 −C̃TE
l1 (l1σ) sin(ϕL + ϕl1

− 2ϕl2
) −C̃TT

l1 (l1σ) sin(ϕL + ϕl1
− 2ϕl2

) (l2σ) sin[ϕl1
+ ϕl2

− 2ϕL] (l2σ) cos[ϕl1
+ ϕl2

− 2ϕL]

q −C̃TE
l1 (l1σ)2 sin 2(ϕl1

− ϕl2
) −C̃TT

l1 (l1σ)2 sin 2(ϕl1
− ϕl2

) −(l2σ)2 sin[2(ϕl2
− ϕL)] −(l2σ)2 cos[2(ϕl2

− ϕL)]

p1 −C̃EE
l1 σ(l1 × L̂) sin 2(ϕl1

− ϕl2
) −C̃TT

l1 σ(l1 × L̂) sin 2(ϕl1
− ϕl2

) σ(l2 × l̂1) · ẑ sin[2(ϕl2
− ϕL)] σ(l2 · l̂1) sin[2(ϕl2

− ϕL)]

p2 −C̃EE
l1 σ(l1 · L̂) sin 2(ϕl1

− ϕl2
) −C̃TT

l1 σ(l1 · L̂) sin 2(ϕl1
− ϕl2

) σ(l2 · l̂1) sin[2(ϕl2
− ϕL)] σ(l2 × l̂1) · ẑ sin[2(ϕl2

− ϕL)]

It is clear from Eqs. (3) and (4) that the distortion field of wavevector L mixes the polarization modes of wavevectors
l1 and l2 = L − l1.

The power spectra of the different modes of the primordial CMB field are defined as

〈X̃(l1)X̃
′(l2)〉 = (2π)2δ(l1 + l2)C̃

XX′

!1 , (5)

where X, X ′ = T, E, B and 〈Ẽ(l1)B̃(l2)〉 = 0, 〈T̃ (l1)B̃(l2)〉 = 0 . The off diagonal terms of the power spectrum (l1 $= l2)
are zero because of statistical isotropy and the 〈Ẽ(l1)B̃(l2)〉 and 〈T̃ (l1)B̃(l2)〉 correlations are zero because Ẽ(l) is
parity even, B̃(l) is parity odd, and the physical processes responsible for the generation of the CMB anisotropies are
parity conserving. The observed CMB power spectra in the presence of distortion and lensing effects can be written
as

〈X(l1)X
′(l2)〉 = (2π)2δ(l1 + l2)

[

CXX′

!1 + NXX′

!1

]

, (6)

with

N TT
! = ∆2

T e!(!+1)σ2/8 ln 2 ,

NEE
! = NBB

! = ∆2
P e!(!+1)σ2/8 ln 2 , (7)

where σ is the FWHM of the beam and ∆T and ∆P are the temperature and polarization detector noise, respectively.
In our numerical calculations we assumed fully polarized detectors, for which ∆P =

√
2∆T . Using Eqn. (3) and (4)

we can calculate 〈X(l1)X ′(l2)〉 correlations. Taking the ensemble average over the CMB fields for a fixed distortion
field D(n̂), one gets

〈X(l1)X
′(l2)〉CMB = fD

XX′(l1, l2)D(l1 + l2) , (8)

for XX ′ = TT, TE, TB, EB and

〈B(l1)B(l2)〉CMB,D = (2π)2δ(l1 + l2)

{

∫

d2l′

(2π)2
CDD

l′ C̃EE
l′′ WB

D (l′, l′′)WB
D (l′, l′′) D = a, ω, (f1, f2), (p1, p2) ,

∫

d2l′

(2π)2
CDD

l′ C̃TT
l′′ WB

D (l′, l′′)WB
D (l′, l′′) D = temperature leakage ,

(9)

where l′′ = l1 − l′ and we have assumed zero primordial B-modes for our fiducial model. The filters fD
XX′(l1, l2) are

given in Table I. Note that 〈...〉CMB means an average over CMB realizations. The leading order effect of distortions
on the 〈E(l1)B(l2)〉 and 〈T (l1)B(l2)〉 correlations is to introduce nonzero off-diagonal terms, while for 〈B(l1)B(l1)〉
the leading order effect is to generate diagonal terms.



Reconstruction

Input Recovered at 15 uK’ white, 1’

• Input and recovered deflection angle maps, 17°x17°

• filtered for display at l < 200



• Temperature (TT) lensing now well-measured

• Integrated measure of matter power spec. on large 
scales and high z!

• Polarization is new, and ultimately more sensitive given 
upcoming low-noise maps

• ACTPol: we do TT, TE, EE, EB pairings



Atacama Cosmology Telescope

Located in Cerro Toco, Northern Chile
High and dry: 
5200m, 0.49mm PWV
6m off-axis 
Gregorian primary
1’ resolution
148 GHz
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• 150 GHz, 11 Sept - 24 Dec 2013

• Four 70 sq. deg. patches, overlapping with 
other surveys
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ACTPol:  Three lensing topics

1. Pol. and Temp. large-scale lensing x Planck CIB
van Engelen+, arxiv:1412.0626

2. Halo lensing detection 
Madhavacheril+, arxiv:1411.1799

3. Pol. and Temp. large-scale lensing autospectrum
In prep.
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CIB-lensing cross-correlation

• 80% correlation
(neglecting Poisson term at high ell)Planck Collaboration: Planck 2013 results. XVIII. Gravitational lensing-infrared background correlation

dominate over most of the sky. Gravitational lensing by large-
scale structure produces small shear and magnification e↵ects in
the observed fluctuations, which can be exploited to reconstruct
an integrated measure of the gravitational potential along the line
of sight Okamoto & Hu (2003). This “CMB lensing potential”
is sourced primarily by dark matter halos located at 1 . z . 3,
halfway between ourselves and the last scattering surface (see
Blandford & Jaroszynski 1981; Blanchard & Schneider 1987, or
Lewis & Challinor 2006 for a review). In the upper frequency
bands (353, 545, and 857 GHz), the dominant extragalactic sig-
nal is not the CMB, but the cosmic infrared background (CIB),
composed of redshifted thermal radiation from UV-heated dust,
enshrouding young stars. The CIB contains much of the energy
from processes involved in structure formation. According to
current models, the dusty star-forming galaxies (DSFGs), which
form the CIB have a redshift distribution peaked between z ⇠ 1
and z ⇠ 2, and tend to live in 1011–1013M� dark matter halos
(see, e.g., Béthermin et al. 2012, and references therein).

As first pointed out by Song et al. (2003), the halo mass and
redshift dependence of the CMB lensing potential and the CIB
fluctuations are well matched, and as such a significant correla-
tion between the two is expected. This point is illustrated quan-
titatively in Fig. 1, where we plot estimates for the redshift- and
mass- kernels of the two tracers. In this paper we report on the
first detection of this correlation.

Measurements of both CMB lensing and CIB fluctuations
are currently undergoing a period of rapid development. While
the CIB mean was first detected using the FIRAS and DIRBE
instruments aboard COBE (Puget et al. 1996; Fixsen et al. 1998;
Hauser et al. 1998), CIB fluctuations were later detected by
the Spitzer Space Telescope (Lagache et al. 2007) and by the
BLAST balloon experiment (Viero et al. 2009) and the Herschel
Space Observatory (Amblard et al. 2011; Viero et al. 2012),
as well as the new generation of CMB experiments, includ-
ing Planck, which have extended these measurements to longer
wavelengths (Hall et al. 2010; Dunkley et al. 2011; Planck
Collaboration XVIII 2011; Reichardt et al. 2012). The Planck
early results paper: Planck Collaboration XVIII (2011) (hence-
forth referred to as PER) presented measurements of the angu-
lar power spectra of CIB anisotropies from arc-minute to degree
scales at 217, 353, 545, and 857 GHz, establishing Planck as a
potent probe of the clustering of the CIB, both in the linear and
non-linear regimes. A substantial extension of PER is presented
in a companion paper to this work (Planck Collaboration 2013,
henceforth referred to as PIR).

The CMB lensing potential, on the other hand, which was
first detected statistically through cross-correlation with galaxy
surveys (Smith et al. 2007; Hirata et al. 2008, and more recently
Bleem et al. 2012; Sherwin et al. 2012), has now been observed
directly in CMB maps by the Atacama Cosmology Telescope
and the South Pole Telescope (Das et al. 2011; van Engelen et al.
2012).

Planck’s frequency coverage, sensitivity and survey area, al-
low high signal-to-noise measurements of both the CIB and the
CMB lensing potential. Accompanying the release of this pa-
per, Planck Collaboration XVII (2013) reports the first measure-
ment and characterisation of the CMB lensing potential with the
Planck data, which has several times more statistical power than
previous measurements, over a large fraction (approximately
70% of the sky). We will use this measurement of the lensing
potential in cross-correlation with measurements of the CIB in
the PlanckHFI bands to make the first detection of the lensing-
infrared background correlation. In addition to our measure-
ment, we discuss the implications for models of the CIB fluc-

Fig. 1. Redshift- and mass- integrand for the CIB and CMB lens-
ing potential power spectra at ` = 500, calculated using the
CIB halo model of Planck Collaboration XVIII (2011), evalu-
ated at 217 GHz. The good match between the redshift and halo
mass distributions leads to an expected correlation up to 80 %.
The sharper features in the CIB kernel are artefacts from the
Béthermin et al. (2012) model. We note that the low mass, high
z behavior of our calculation is limited by the accuracy of the
mass function we use (Tinker & Wetzel 2010). All of our mass
integrals use Mmin = 105 M�.

tuations. The outline of this paper is as follows. In Sect. 2 we
describe the data we will use, followed by a description of our
pipeline for correlating the CIB and lensing signals in Sect. 3.
Our main result is presented in Sect. 4, with a description of our
error budget, consistency tests and an array of systematic tests in
Sect. 5. We discuss the implications of the measured correlation
for CIB modelling in Sect. 6.

2. Data sets

2.1. Planck maps

Planck (Tauber et al. 2010; Planck Collaboration I 2011) is the
third generation space mission to measure the anisotropy of the
CMB. It observes the sky with high sensitivity in nine frequency
bands covering 30–857 GHz at an angular resolution from 310 to
50. The Low Frequency Instrument (LFI; Mandolesi et al. 2010;
Bersanelli et al. 2010; Mennella et al. 2011) covers the 30, 44,
and 70 GHz bands with radiometers that incorporate amplifiers
cooled to 20 K. The High Frequency Instrument (HFI; Lamarre
et al. 2010; Planck HFI Core Team 2011a) covers the 100, 143,
217, 353, 545, and 857 GHz bands with bolometers cooled to
0.1 K. Polarization is measured in all but the highest two bands
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lated between the auto- and cross-spectra at a given frequency),
as well as the lens normalization error (which is also corre-
lated across spectra) are not accounted for in this approxima-
tion. In addition, the lens reconstruction has some sensitivity to
all modes of the temperature maps, and so di↵erent � modes
are correlated to some degree. We also neglect the fact that the
contribution to the error from the CIB signal itself (the orange
line in Fig. 5) is also substantially correlated from frequency to
frequency. However, our evaluation using simulations suggests
that these e↵ects are too small to significantly a↵ect our pro-
cedure. We thus resort to simply adding the beam, calibration
and normalization uncertainties in quadrature to the statistical
errors. The posterior probability distributions of model param-
eters are determined using now standard Markov Chain Monte
Carlo techniques (e.g., Knox et al. 2001; Lewis & Bridle 2002).

6.2. Two modelling approaches

The strength of the correlation signal should come as no sur-
prise, given our current knowledge of CMB lensing and the CIB.
The PER model predicts a high correlation between the CIB and
the lensing potential. As clearly illustrated in Fig. 1, the broad
overlap of the redshift distributions of the CIB with the lensing
kernel peaking at z ⇡ 2–3 leads to a correlation of 60–80 %. This
is comparable to our measurements at all of the HFI frequencies,
as illustrated in Fig. 13,

In models of the cross-correlation, the underlying properties
we can probe come from a combination of the lensing potential
and the characteristics of the DSFGs, in particular their emis-
sivity and clustering properties. Mostly driven by linear physics,
the former is well understood theoretically, as confirmed by re-
cent observations (Smith et al. 2008; Hirata et al. 2008; Das et al.
2011; van Engelen et al. 2012). Assuming the currently favored
⇤CDM cosmology, we can consider it to be known to better than
10 % in the multipole range of interest to us, an uncertainty dom-
inated by the uncertainty in the normalization of the primordial
power spectrum. Given that this is much smaller than the theoret-
ical uncertainties related to DSFGs, we will fix the cosmology to
the currently favoured Planck alone flat ⇤CDM model in Planck
Collaboration XVI (2013), and will focus our analysis on the
modelling of the DSFGs.

At a given redshift we model the fluctuations in the mean
CIB emission, j̄, as being proportional to the fluctuations in the
number of galaxies, ng (Haiman & Knox 2000),

� j / j̄
�ng

ng
. (12)

With this hypothesis, the goal of the CIB modelling becomes
twofold: first, to better understand the statistical properties of
the dusty galaxy number density, �ng; and second, to reconstruct
the mean emissivity of the CIB as a function of redshift.

In this paper we will use two di↵erent models of the CIB
emission. The first model (described in Sect. 6.2.1 and inspired
by Hall et al. 2010) uses a single bias parameter at all frequen-
cies with the mean CIB emissivity modelled as a two parameter
Gaussian. This model is not designed to be physically realistic,
and furthermore we will marginalize over an arbitrary amplitude
in this case. Nevertheless, we present this simple model to show
that our measurements are quite consistent with broad expecta-
tions of the CIB. The second model, described in Sect. 6.2.2, is
a natural extension of the Halo Occupation Density (HOD) ap-
proach used in PER (see also Pénin et al. 2011, and references
therein). But unlike the results obtained in PER we now use a

Fig. 13. Cross-correlation coe�cients calculated from the model
� spectrum and best-fit halo model at each frequency. The CIB
is a spectacular tracer of CMB lensing, and vice-versa. The data
points represent the measured cross-correlation divided by the
best-fit auto power spectra models at 545 GHz.

Fig. 14. Marginalized 2-D distributions of zc and�z for the linear
bias model, fit to all frequencies simultaneously. The orange dots
indicate the parameter values at the minimum �2.

single HOD to describe the spectra at all frequencies. This is
possible by allowing for deviations from the Béthermin et al.
(2011) model (hereafter B11) that was used to fix the emissivity.

6.2.1. Linear bias model

As a first pass at interpreting our measurement, we will consider
a redshift independent linear bias model with a simple paramet-
ric SED. This model was found to provide a reasonable fit to the
auto-spectra in the linear regime in PER. Throughout this paper
we use the Limber approximation, and in this section, since we
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• Very similar z distributions

Planck 2013
Data from κ(143) x I545
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a “polarization-only” combination, consisting of the EB
and EE estimates combined; and an “all” combination,
with all four estimates combined. For these combina-
tions, we weight by the inverse variance of each estima-
tor.
We then cross-correlate each of these reconstructed

lensing and curl fields with the Planck CIB maps. We ob-
tain bandpower covariances from the 2048 Monte Carlo
simulations discussed above, which we correlate with
the same Planck CIB maps. We test for convergence
of the covariance matrix by using half the simulations
and checking that we obtain stable results. The esti-
mators are correlated (Hu & Okamoto 2002): the simu-
lated maps are generated from realizations of T, E, and
B including the expected amount of TE cross-power, and
each simulated T, Q and U map is lensed by the same
lensing field. When combining estimators, we form the
same linear combination with each of the 2048 simula-
tions that we form with the data. The inter-band covari-
ance matrix which we obtain for each of these combina-
tions thus includes all expected sources of correlation.
In Figure 1, we show the result for the “all” combi-

nation of estimators, with error bars representing the
on-diagonal part of the corresponding covariance ma-
trix. Neighboring bins are correlated by roughly 2–5%.
We fit to the model described in Section 4 with a free
overall amplitude, A. We find a best-fit amplitude of
A = 1.02+0.12

�0.08, corresponding to a detection signal-to-

noise ratio of
qP

i

(�2
i,null � �2

i,min) = 9.1. Here �2
i,null

corresponds to the value of �2 for A = 0 and �2
i,min is

the value at which the �2 is minimized. These results,
together with those for each estimator and patch sepa-
rately, are summarized in Table 1.
We show the co-added cross power derived from the

EE and EB estimators combined in Figure 2. Here the
lensing of the CMB polarization is detected at signal-
to-noise ratio of 4.5. The cross power derived from the
EB estimator alone is shown in Figure 3. This yields a
detection of B-mode polarization from lensing at a signal-
to-noise ratio of 3.2.
We run the same pipeline for the curl reconstructions.

As shown in Table 2 and Figure 4, the curl estimates are
consistent with null. In Table 2, we quote amplitudes
relative to the usual scalar lensing curve.

6. SYSTEMATIC ERROR TESTS

The statistical uncertainties on our results for the
cross-correlation amplitude are approximately 10% for
the TT estimator and 30% for the EB estimator; we will
show here that no known sources of systematic uncer-
tainty are comparable in size.
Possible instrumental systematics include calibration

and beam uncertainty. The largest known beam uncer-
tainty is the overall (monopole) beam profile, for both the
ACTPol and Planck surveys. For ACTPol, we estimate
the e↵ect of the beam and calibration errors together on
the lensing reconstruction by computing e↵ective error
bands as functions of CMB multipoles, as described in
N14. This yields an e↵ective error band across the CMB
power spectrum of about 3%. We then perform recon-
struction on the temperature maps, scaling the maps in
the Fourier domain by +1 and �1�. This yields an o↵-

TABLE 1
Fits and �2 values for the lensing convergence field

S/N A �2
min (⌫) PTE

TT, D1 2.4 0.90±0.36 9.6 (9) 0.39
TT, D5 3.3 0.82+0.24

�0.20 11.5 (9) 0.24
TT, D6 7.2 1.06±0.12 13.7 (9) 0.13

TE, D1 1.5 2.10±1.40 4.6 (9) 0.87
TE, D5 0.2 0.22+0.80

�0.84 13.5 (9) 0.14
TE, D6 2.0 0.90±0.44 4.1 (9) 0.91

EE, D1 1.3 -2.14+1.60
�1.56 4.3 (9) 0.89

EE, D5 0.5 0.46±0.88 5.2 (9) 0.82
EE, D6 4.0 1.74+0.44

�0.40 11.5 (9) 0.24

EB, D1 0.1 0.26+1.92
�1.88 9.8 (9) 0.37

EB, D5 1.3 1.26+0.88
�0.92 3.8 (9) 0.92

EB, D6 2.9 1.38+0.44
�0.48 12.0 (9) 0.21

EB, all 3.2 1.30±0.40 25.9 (29) 0.63

Pol. estimators, all 4.5 1.26+0.28
�0.24 30.4 (29) 0.39

All estimators, all 9.1 1.02+0.12
�0.08 37.2 (29) 0.14

Fit results for the cross power between the lensing field from
ACTPol maps and Planck maps at 545 GHz, for each field
and estimator. The first column shows the signal to noise
ratio calculated using the method described in the text. The
second shows the best-fit amplitude A, and associated
uncertainty, relative to the model which fits the Planck data.
The third column shows the values of �2 at this best-fit point
and the number of degrees of freedom. The fourth shows the
probability to exceed the given value of �2. The rows marked
“all” are obtained by adding the �2 functions and performing
new fits for A.

TABLE 2
Fits and �2 values for the lensing curl field

S/N A �2
min (⌫) PTE

TT, D1 0.0 0.02+0.36
�0.40 17.2 (9) 0.05

TT, D5 0.5 -0.14±0.24 6.7 (9) 0.67
TT, D6 0.2 0.02+0.16

�0.12 8.8 (9) 0.46

TE, D1 1.1 -1.46±1.32 11.9 (9) 0.22
TE, D5 0.2 0.18±0.80 5.7 (9) 0.77
TE, D6 1.1 -0.50+0.40

�0.44 5.6 (9) 0.78

EE, D1 0.1 0.26+1.96
�1.92 3.9 (9) 0.92

EE, D5 0.5 0.54+1.04
�1.00 7.2 (9) 0.62

EE, D6 1.6 -0.78+0.48
�0.52 11.5 (9) 0.24

EB, D1 1.9 2.26±1.16 10.9 (9) 0.28
EB, D5 1.1 0.66±0.56 5.5 (9) 0.79
EB, D6 0.1 0.02+0.28

�0.24 17.3 (9) 0.04

EB, all 1.0 0.22+0.24
�0.20 37.8 (29) 0.13

Pol. estimators, all 0.5 0.10±0.20 32.7 (29) 0.29

All estimators, all 0.1 0.02+0.08
�0.12 36.3 (29) 0.16

Null check for the cross power between the curl lensing field
obtained from ACTPol maps and Planck maps at 545 GHz,
for each field and estimator. Columns are as in Table 1, where
quantities are quoted relative to the same (scalar) model.

set of approximately ±4% in the best-fit cross-correlation
amplitude for D6. We thus assign a systematic uncer-
tainty of 4% to our final result.The Planck map-level
beam error has amplitude 0.3% to l = 3000, and is thus
negligible for this analysis. Other beam e↵ects are ex-
pected to be subdominant. Common mode beam ellip-
ticity is expected to be subdominant due to isotropy of
the maps in the deep regions we use.
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a “polarization-only” combination, consisting of the EB
and EE estimates combined; and an “all” combination,
with all four estimates combined. For these combina-
tions, we weight by the inverse variance of each estima-
tor.
We then cross-correlate each of these reconstructed

lensing and curl fields with the Planck CIB maps. We ob-
tain bandpower covariances from the 2048 Monte Carlo
simulations discussed above, which we correlate with
the same Planck CIB maps. We test for convergence
of the covariance matrix by using half the simulations
and checking that we obtain stable results. The esti-
mators are correlated (Hu & Okamoto 2002): the simu-
lated maps are generated from realizations of T, E, and
B including the expected amount of TE cross-power, and
each simulated T, Q and U map is lensed by the same
lensing field. When combining estimators, we form the
same linear combination with each of the 2048 simula-
tions that we form with the data. The inter-band covari-
ance matrix which we obtain for each of these combina-
tions thus includes all expected sources of correlation.
In Figure 1, we show the result for the “all” combi-

nation of estimators, with error bars representing the
on-diagonal part of the corresponding covariance ma-
trix. Neighboring bins are correlated by roughly 2–5%.
We fit to the model described in Section 4 with a free
overall amplitude, A. We find a best-fit amplitude of
A = 1.02+0.12

�0.08, corresponding to a detection signal-to-

noise ratio of
qP

i

(�2
i,null � �2

i,min) = 9.1. Here �2
i,null

corresponds to the value of �2 for A = 0 and �2
i,min is

the value at which the �2 is minimized. These results,
together with those for each estimator and patch sepa-
rately, are summarized in Table 1.
We show the co-added cross power derived from the

EE and EB estimators combined in Figure 2. Here the
lensing of the CMB polarization is detected at signal-
to-noise ratio of 4.5. The cross power derived from the
EB estimator alone is shown in Figure 3. This yields a
detection of B-mode polarization from lensing at a signal-
to-noise ratio of 3.2.
We run the same pipeline for the curl reconstructions.

As shown in Table 2 and Figure 4, the curl estimates are
consistent with null. In Table 2, we quote amplitudes
relative to the usual scalar lensing curve.

6. SYSTEMATIC ERROR TESTS

The statistical uncertainties on our results for the
cross-correlation amplitude are approximately 10% for
the TT estimator and 30% for the EB estimator; we will
show here that no known sources of systematic uncer-
tainty are comparable in size.
Possible instrumental systematics include calibration

and beam uncertainty. The largest known beam uncer-
tainty is the overall (monopole) beam profile, for both the
ACTPol and Planck surveys. For ACTPol, we estimate
the e↵ect of the beam and calibration errors together on
the lensing reconstruction by computing e↵ective error
bands as functions of CMB multipoles, as described in
N14. This yields an e↵ective error band across the CMB
power spectrum of about 3%. We then perform recon-
struction on the temperature maps, scaling the maps in
the Fourier domain by +1 and �1�. This yields an o↵-

TABLE 1
Fits and �2 values for the lensing convergence field

S/N A �2
min (⌫) PTE

TT, D1 2.4 0.90±0.36 9.6 (9) 0.39
TT, D5 3.3 0.82+0.24

�0.20 11.5 (9) 0.24
TT, D6 7.2 1.06±0.12 13.7 (9) 0.13

TE, D1 1.5 2.10±1.40 4.6 (9) 0.87
TE, D5 0.2 0.22+0.80

�0.84 13.5 (9) 0.14
TE, D6 2.0 0.90±0.44 4.1 (9) 0.91

EE, D1 1.3 -2.14+1.60
�1.56 4.3 (9) 0.89

EE, D5 0.5 0.46±0.88 5.2 (9) 0.82
EE, D6 4.0 1.74+0.44

�0.40 11.5 (9) 0.24

EB, D1 0.1 0.26+1.92
�1.88 9.8 (9) 0.37

EB, D5 1.3 1.26+0.88
�0.92 3.8 (9) 0.92

EB, D6 2.9 1.38+0.44
�0.48 12.0 (9) 0.21

EB, all 3.2 1.30±0.40 25.9 (29) 0.63

Pol. estimators, all 4.5 1.26+0.28
�0.24 30.4 (29) 0.39

All estimators, all 9.1 1.02+0.12
�0.08 37.2 (29) 0.14

Fit results for the cross power between the lensing field from
ACTPol maps and Planck maps at 545 GHz, for each field
and estimator. The first column shows the signal to noise
ratio calculated using the method described in the text. The
second shows the best-fit amplitude A, and associated
uncertainty, relative to the model which fits the Planck data.
The third column shows the values of �2 at this best-fit point
and the number of degrees of freedom. The fourth shows the
probability to exceed the given value of �2. The rows marked
“all” are obtained by adding the �2 functions and performing
new fits for A.

TABLE 2
Fits and �2 values for the lensing curl field

S/N A �2
min (⌫) PTE

TT, D1 0.0 0.02+0.36
�0.40 17.2 (9) 0.05

TT, D5 0.5 -0.14±0.24 6.7 (9) 0.67
TT, D6 0.2 0.02+0.16

�0.12 8.8 (9) 0.46

TE, D1 1.1 -1.46±1.32 11.9 (9) 0.22
TE, D5 0.2 0.18±0.80 5.7 (9) 0.77
TE, D6 1.1 -0.50+0.40

�0.44 5.6 (9) 0.78

EE, D1 0.1 0.26+1.96
�1.92 3.9 (9) 0.92

EE, D5 0.5 0.54+1.04
�1.00 7.2 (9) 0.62

EE, D6 1.6 -0.78+0.48
�0.52 11.5 (9) 0.24

EB, D1 1.9 2.26±1.16 10.9 (9) 0.28
EB, D5 1.1 0.66±0.56 5.5 (9) 0.79
EB, D6 0.1 0.02+0.28

�0.24 17.3 (9) 0.04

EB, all 1.0 0.22+0.24
�0.20 37.8 (29) 0.13

Pol. estimators, all 0.5 0.10±0.20 32.7 (29) 0.29

All estimators, all 0.1 0.02+0.08
�0.12 36.3 (29) 0.16

Null check for the cross power between the curl lensing field
obtained from ACTPol maps and Planck maps at 545 GHz,
for each field and estimator. Columns are as in Table 1, where
quantities are quoted relative to the same (scalar) model.

set of approximately ±4% in the best-fit cross-correlation
amplitude for D6. We thus assign a systematic uncer-
tainty of 4% to our final result.The Planck map-level
beam error has amplitude 0.3% to l = 3000, and is thus
negligible for this analysis. Other beam e↵ects are ex-
pected to be subdominant. Common mode beam ellip-
ticity is expected to be subdominant due to isotropy of
the maps in the deep regions we use.
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a “polarization-only” combination, consisting of the EB
and EE estimates combined; and an “all” combination,
with all four estimates combined. For these combina-
tions, we weight by the inverse variance of each estima-
tor.
We then cross-correlate each of these reconstructed

lensing and curl fields with the Planck CIB maps. We ob-
tain bandpower covariances from the 2048 Monte Carlo
simulations discussed above, which we correlate with
the same Planck CIB maps. We test for convergence
of the covariance matrix by using half the simulations
and checking that we obtain stable results. The esti-
mators are correlated (Hu & Okamoto 2002): the simu-
lated maps are generated from realizations of T, E, and
B including the expected amount of TE cross-power, and
each simulated T, Q and U map is lensed by the same
lensing field. When combining estimators, we form the
same linear combination with each of the 2048 simula-
tions that we form with the data. The inter-band covari-
ance matrix which we obtain for each of these combina-
tions thus includes all expected sources of correlation.
In Figure 1, we show the result for the “all” combi-

nation of estimators, with error bars representing the
on-diagonal part of the corresponding covariance ma-
trix. Neighboring bins are correlated by roughly 2–5%.
We fit to the model described in Section 4 with a free
overall amplitude, A. We find a best-fit amplitude of
A = 1.02+0.12

�0.08, corresponding to a detection signal-to-

noise ratio of
qP

i

(�2
i,null � �2

i,min) = 9.1. Here �2
i,null

corresponds to the value of �2 for A = 0 and �2
i,min is

the value at which the �2 is minimized. These results,
together with those for each estimator and patch sepa-
rately, are summarized in Table 1.
We show the co-added cross power derived from the

EE and EB estimators combined in Figure 2. Here the
lensing of the CMB polarization is detected at signal-
to-noise ratio of 4.5. The cross power derived from the
EB estimator alone is shown in Figure 3. This yields a
detection of B-mode polarization from lensing at a signal-
to-noise ratio of 3.2.
We run the same pipeline for the curl reconstructions.

As shown in Table 2 and Figure 4, the curl estimates are
consistent with null. In Table 2, we quote amplitudes
relative to the usual scalar lensing curve.

6. SYSTEMATIC ERROR TESTS

The statistical uncertainties on our results for the
cross-correlation amplitude are approximately 10% for
the TT estimator and 30% for the EB estimator; we will
show here that no known sources of systematic uncer-
tainty are comparable in size.
Possible instrumental systematics include calibration

and beam uncertainty. The largest known beam uncer-
tainty is the overall (monopole) beam profile, for both the
ACTPol and Planck surveys. For ACTPol, we estimate
the e↵ect of the beam and calibration errors together on
the lensing reconstruction by computing e↵ective error
bands as functions of CMB multipoles, as described in
N14. This yields an e↵ective error band across the CMB
power spectrum of about 3%. We then perform recon-
struction on the temperature maps, scaling the maps in
the Fourier domain by +1 and �1�. This yields an o↵-

TABLE 1
Fits and �2 values for the lensing convergence field

S/N A �2
min (⌫) PTE

TT, D1 2.4 0.90±0.36 9.6 (9) 0.39
TT, D5 3.3 0.82+0.24

�0.20 11.5 (9) 0.24
TT, D6 7.2 1.06±0.12 13.7 (9) 0.13

TE, D1 1.5 2.10±1.40 4.6 (9) 0.87
TE, D5 0.2 0.22+0.80

�0.84 13.5 (9) 0.14
TE, D6 2.0 0.90±0.44 4.1 (9) 0.91

EE, D1 1.3 -2.14+1.60
�1.56 4.3 (9) 0.89

EE, D5 0.5 0.46±0.88 5.2 (9) 0.82
EE, D6 4.0 1.74+0.44

�0.40 11.5 (9) 0.24

EB, D1 0.1 0.26+1.92
�1.88 9.8 (9) 0.37

EB, D5 1.3 1.26+0.88
�0.92 3.8 (9) 0.92

EB, D6 2.9 1.38+0.44
�0.48 12.0 (9) 0.21

EB, all 3.2 1.30±0.40 25.9 (29) 0.63

Pol. estimators, all 4.5 1.26+0.28
�0.24 30.4 (29) 0.39

All estimators, all 9.1 1.02+0.12
�0.08 37.2 (29) 0.14

Fit results for the cross power between the lensing field from
ACTPol maps and Planck maps at 545 GHz, for each field
and estimator. The first column shows the signal to noise
ratio calculated using the method described in the text. The
second shows the best-fit amplitude A, and associated
uncertainty, relative to the model which fits the Planck data.
The third column shows the values of �2 at this best-fit point
and the number of degrees of freedom. The fourth shows the
probability to exceed the given value of �2. The rows marked
“all” are obtained by adding the �2 functions and performing
new fits for A.

TABLE 2
Fits and �2 values for the lensing curl field

S/N A �2
min (⌫) PTE

TT, D1 0.0 0.02+0.36
�0.40 17.2 (9) 0.05

TT, D5 0.5 -0.14±0.24 6.7 (9) 0.67
TT, D6 0.2 0.02+0.16

�0.12 8.8 (9) 0.46

TE, D1 1.1 -1.46±1.32 11.9 (9) 0.22
TE, D5 0.2 0.18±0.80 5.7 (9) 0.77
TE, D6 1.1 -0.50+0.40

�0.44 5.6 (9) 0.78

EE, D1 0.1 0.26+1.96
�1.92 3.9 (9) 0.92

EE, D5 0.5 0.54+1.04
�1.00 7.2 (9) 0.62

EE, D6 1.6 -0.78+0.48
�0.52 11.5 (9) 0.24

EB, D1 1.9 2.26±1.16 10.9 (9) 0.28
EB, D5 1.1 0.66±0.56 5.5 (9) 0.79
EB, D6 0.1 0.02+0.28

�0.24 17.3 (9) 0.04

EB, all 1.0 0.22+0.24
�0.20 37.8 (29) 0.13

Pol. estimators, all 0.5 0.10±0.20 32.7 (29) 0.29

All estimators, all 0.1 0.02+0.08
�0.12 36.3 (29) 0.16

Null check for the cross power between the curl lensing field
obtained from ACTPol maps and Planck maps at 545 GHz,
for each field and estimator. Columns are as in Table 1, where
quantities are quoted relative to the same (scalar) model.

set of approximately ±4% in the best-fit cross-correlation
amplitude for D6. We thus assign a systematic uncer-
tainty of 4% to our final result.The Planck map-level
beam error has amplitude 0.3% to l = 3000, and is thus
negligible for this analysis. Other beam e↵ects are ex-
pected to be subdominant. Common mode beam ellip-
ticity is expected to be subdominant due to isotropy of
the maps in the deep regions we use.
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a “polarization-only” combination, consisting of the EB
and EE estimates combined; and an “all” combination,
with all four estimates combined. For these combina-
tions, we weight by the inverse variance of each estima-
tor.
We then cross-correlate each of these reconstructed

lensing and curl fields with the Planck CIB maps. We ob-
tain bandpower covariances from the 2048 Monte Carlo
simulations discussed above, which we correlate with
the same Planck CIB maps. We test for convergence
of the covariance matrix by using half the simulations
and checking that we obtain stable results. The esti-
mators are correlated (Hu & Okamoto 2002): the simu-
lated maps are generated from realizations of T, E, and
B including the expected amount of TE cross-power, and
each simulated T, Q and U map is lensed by the same
lensing field. When combining estimators, we form the
same linear combination with each of the 2048 simula-
tions that we form with the data. The inter-band covari-
ance matrix which we obtain for each of these combina-
tions thus includes all expected sources of correlation.
In Figure 1, we show the result for the “all” combi-

nation of estimators, with error bars representing the
on-diagonal part of the corresponding covariance ma-
trix. Neighboring bins are correlated by roughly 2–5%.
We fit to the model described in Section 4 with a free
overall amplitude, A. We find a best-fit amplitude of
A = 1.02+0.12

�0.08, corresponding to a detection signal-to-

noise ratio of
qP

i

(�2
i,null � �2

i,min) = 9.1. Here �2
i,null

corresponds to the value of �2 for A = 0 and �2
i,min is

the value at which the �2 is minimized. These results,
together with those for each estimator and patch sepa-
rately, are summarized in Table 1.
We show the co-added cross power derived from the

EE and EB estimators combined in Figure 2. Here the
lensing of the CMB polarization is detected at signal-
to-noise ratio of 4.5. The cross power derived from the
EB estimator alone is shown in Figure 3. This yields a
detection of B-mode polarization from lensing at a signal-
to-noise ratio of 3.2.
We run the same pipeline for the curl reconstructions.

As shown in Table 2 and Figure 4, the curl estimates are
consistent with null. In Table 2, we quote amplitudes
relative to the usual scalar lensing curve.

6. SYSTEMATIC ERROR TESTS

The statistical uncertainties on our results for the
cross-correlation amplitude are approximately 10% for
the TT estimator and 30% for the EB estimator; we will
show here that no known sources of systematic uncer-
tainty are comparable in size.
Possible instrumental systematics include calibration

and beam uncertainty. The largest known beam uncer-
tainty is the overall (monopole) beam profile, for both the
ACTPol and Planck surveys. For ACTPol, we estimate
the e↵ect of the beam and calibration errors together on
the lensing reconstruction by computing e↵ective error
bands as functions of CMB multipoles, as described in
N14. This yields an e↵ective error band across the CMB
power spectrum of about 3%. We then perform recon-
struction on the temperature maps, scaling the maps in
the Fourier domain by +1 and �1�. This yields an o↵-

TABLE 1
Fits and �2 values for the lensing convergence field

S/N A �2
min (⌫) PTE

TT, D1 2.4 0.90±0.36 9.6 (9) 0.39
TT, D5 3.3 0.82+0.24

�0.20 11.5 (9) 0.24
TT, D6 7.2 1.06±0.12 13.7 (9) 0.13

TE, D1 1.5 2.10±1.40 4.6 (9) 0.87
TE, D5 0.2 0.22+0.80

�0.84 13.5 (9) 0.14
TE, D6 2.0 0.90±0.44 4.1 (9) 0.91

EE, D1 1.3 -2.14+1.60
�1.56 4.3 (9) 0.89

EE, D5 0.5 0.46±0.88 5.2 (9) 0.82
EE, D6 4.0 1.74+0.44

�0.40 11.5 (9) 0.24

EB, D1 0.1 0.26+1.92
�1.88 9.8 (9) 0.37

EB, D5 1.3 1.26+0.88
�0.92 3.8 (9) 0.92

EB, D6 2.9 1.38+0.44
�0.48 12.0 (9) 0.21

EB, all 3.2 1.30±0.40 25.9 (29) 0.63

Pol. estimators, all 4.5 1.26+0.28
�0.24 30.4 (29) 0.39

All estimators, all 9.1 1.02+0.12
�0.08 37.2 (29) 0.14

Fit results for the cross power between the lensing field from
ACTPol maps and Planck maps at 545 GHz, for each field
and estimator. The first column shows the signal to noise
ratio calculated using the method described in the text. The
second shows the best-fit amplitude A, and associated
uncertainty, relative to the model which fits the Planck data.
The third column shows the values of �2 at this best-fit point
and the number of degrees of freedom. The fourth shows the
probability to exceed the given value of �2. The rows marked
“all” are obtained by adding the �2 functions and performing
new fits for A.

TABLE 2
Fits and �2 values for the lensing curl field

S/N A �2
min (⌫) PTE

TT, D1 0.0 0.02+0.36
�0.40 17.2 (9) 0.05

TT, D5 0.5 -0.14±0.24 6.7 (9) 0.67
TT, D6 0.2 0.02+0.16

�0.12 8.8 (9) 0.46

TE, D1 1.1 -1.46±1.32 11.9 (9) 0.22
TE, D5 0.2 0.18±0.80 5.7 (9) 0.77
TE, D6 1.1 -0.50+0.40

�0.44 5.6 (9) 0.78

EE, D1 0.1 0.26+1.96
�1.92 3.9 (9) 0.92

EE, D5 0.5 0.54+1.04
�1.00 7.2 (9) 0.62

EE, D6 1.6 -0.78+0.48
�0.52 11.5 (9) 0.24

EB, D1 1.9 2.26±1.16 10.9 (9) 0.28
EB, D5 1.1 0.66±0.56 5.5 (9) 0.79
EB, D6 0.1 0.02+0.28

�0.24 17.3 (9) 0.04

EB, all 1.0 0.22+0.24
�0.20 37.8 (29) 0.13

Pol. estimators, all 0.5 0.10±0.20 32.7 (29) 0.29

All estimators, all 0.1 0.02+0.08
�0.12 36.3 (29) 0.16

Null check for the cross power between the curl lensing field
obtained from ACTPol maps and Planck maps at 545 GHz,
for each field and estimator. Columns are as in Table 1, where
quantities are quoted relative to the same (scalar) model.

set of approximately ±4% in the best-fit cross-correlation
amplitude for D6. We thus assign a systematic uncer-
tainty of 4% to our final result.The Planck map-level
beam error has amplitude 0.3% to l = 3000, and is thus
negligible for this analysis. Other beam e↵ects are ex-
pected to be subdominant. Common mode beam ellip-
ticity is expected to be subdominant due to isotropy of
the maps in the deep regions we use.
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a “polarization-only” combination, consisting of the EB
and EE estimates combined; and an “all” combination,
with all four estimates combined. For these combina-
tions, we weight by the inverse variance of each estima-
tor.
We then cross-correlate each of these reconstructed

lensing and curl fields with the Planck CIB maps. We ob-
tain bandpower covariances from the 2048 Monte Carlo
simulations discussed above, which we correlate with
the same Planck CIB maps. We test for convergence
of the covariance matrix by using half the simulations
and checking that we obtain stable results. The esti-
mators are correlated (Hu & Okamoto 2002): the simu-
lated maps are generated from realizations of T, E, and
B including the expected amount of TE cross-power, and
each simulated T, Q and U map is lensed by the same
lensing field. When combining estimators, we form the
same linear combination with each of the 2048 simula-
tions that we form with the data. The inter-band covari-
ance matrix which we obtain for each of these combina-
tions thus includes all expected sources of correlation.
In Figure 1, we show the result for the “all” combi-

nation of estimators, with error bars representing the
on-diagonal part of the corresponding covariance ma-
trix. Neighboring bins are correlated by roughly 2–5%.
We fit to the model described in Section 4 with a free
overall amplitude, A. We find a best-fit amplitude of
A = 1.02+0.12

�0.08, corresponding to a detection signal-to-

noise ratio of
qP

i

(�2
i,null � �2

i,min) = 9.1. Here �2
i,null

corresponds to the value of �2 for A = 0 and �2
i,min is

the value at which the �2 is minimized. These results,
together with those for each estimator and patch sepa-
rately, are summarized in Table 1.
We show the co-added cross power derived from the

EE and EB estimators combined in Figure 2. Here the
lensing of the CMB polarization is detected at signal-
to-noise ratio of 4.5. The cross power derived from the
EB estimator alone is shown in Figure 3. This yields a
detection of B-mode polarization from lensing at a signal-
to-noise ratio of 3.2.
We run the same pipeline for the curl reconstructions.

As shown in Table 2 and Figure 4, the curl estimates are
consistent with null. In Table 2, we quote amplitudes
relative to the usual scalar lensing curve.

6. SYSTEMATIC ERROR TESTS

The statistical uncertainties on our results for the
cross-correlation amplitude are approximately 10% for
the TT estimator and 30% for the EB estimator; we will
show here that no known sources of systematic uncer-
tainty are comparable in size.
Possible instrumental systematics include calibration

and beam uncertainty. The largest known beam uncer-
tainty is the overall (monopole) beam profile, for both the
ACTPol and Planck surveys. For ACTPol, we estimate
the e↵ect of the beam and calibration errors together on
the lensing reconstruction by computing e↵ective error
bands as functions of CMB multipoles, as described in
N14. This yields an e↵ective error band across the CMB
power spectrum of about 3%. We then perform recon-
struction on the temperature maps, scaling the maps in
the Fourier domain by +1 and �1�. This yields an o↵-

TABLE 1
Fits and �2 values for the lensing convergence field

S/N A �2
min (⌫) PTE

TT, D1 2.4 0.90±0.36 9.6 (9) 0.39
TT, D5 3.3 0.82+0.24

�0.20 11.5 (9) 0.24
TT, D6 7.2 1.06±0.12 13.7 (9) 0.13

TE, D1 1.5 2.10±1.40 4.6 (9) 0.87
TE, D5 0.2 0.22+0.80

�0.84 13.5 (9) 0.14
TE, D6 2.0 0.90±0.44 4.1 (9) 0.91

EE, D1 1.3 -2.14+1.60
�1.56 4.3 (9) 0.89

EE, D5 0.5 0.46±0.88 5.2 (9) 0.82
EE, D6 4.0 1.74+0.44

�0.40 11.5 (9) 0.24

EB, D1 0.1 0.26+1.92
�1.88 9.8 (9) 0.37

EB, D5 1.3 1.26+0.88
�0.92 3.8 (9) 0.92

EB, D6 2.9 1.38+0.44
�0.48 12.0 (9) 0.21

EB, all 3.2 1.30±0.40 25.9 (29) 0.63

Pol. estimators, all 4.5 1.26+0.28
�0.24 30.4 (29) 0.39

All estimators, all 9.1 1.02+0.12
�0.08 37.2 (29) 0.14

Fit results for the cross power between the lensing field from
ACTPol maps and Planck maps at 545 GHz, for each field
and estimator. The first column shows the signal to noise
ratio calculated using the method described in the text. The
second shows the best-fit amplitude A, and associated
uncertainty, relative to the model which fits the Planck data.
The third column shows the values of �2 at this best-fit point
and the number of degrees of freedom. The fourth shows the
probability to exceed the given value of �2. The rows marked
“all” are obtained by adding the �2 functions and performing
new fits for A.

TABLE 2
Fits and �2 values for the lensing curl field

S/N A �2
min (⌫) PTE

TT, D1 0.0 0.02+0.36
�0.40 17.2 (9) 0.05

TT, D5 0.5 -0.14±0.24 6.7 (9) 0.67
TT, D6 0.2 0.02+0.16

�0.12 8.8 (9) 0.46

TE, D1 1.1 -1.46±1.32 11.9 (9) 0.22
TE, D5 0.2 0.18±0.80 5.7 (9) 0.77
TE, D6 1.1 -0.50+0.40

�0.44 5.6 (9) 0.78

EE, D1 0.1 0.26+1.96
�1.92 3.9 (9) 0.92

EE, D5 0.5 0.54+1.04
�1.00 7.2 (9) 0.62

EE, D6 1.6 -0.78+0.48
�0.52 11.5 (9) 0.24

EB, D1 1.9 2.26±1.16 10.9 (9) 0.28
EB, D5 1.1 0.66±0.56 5.5 (9) 0.79
EB, D6 0.1 0.02+0.28

�0.24 17.3 (9) 0.04

EB, all 1.0 0.22+0.24
�0.20 37.8 (29) 0.13

Pol. estimators, all 0.5 0.10±0.20 32.7 (29) 0.29

All estimators, all 0.1 0.02+0.08
�0.12 36.3 (29) 0.16

Null check for the cross power between the curl lensing field
obtained from ACTPol maps and Planck maps at 545 GHz,
for each field and estimator. Columns are as in Table 1, where
quantities are quoted relative to the same (scalar) model.

set of approximately ±4% in the best-fit cross-correlation
amplitude for D6. We thus assign a systematic uncer-
tainty of 4% to our final result.The Planck map-level
beam error has amplitude 0.3% to l = 3000, and is thus
negligible for this analysis. Other beam e↵ects are ex-
pected to be subdominant. Common mode beam ellip-
ticity is expected to be subdominant due to isotropy of
the maps in the deep regions we use.
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a “polarization-only” combination, consisting of the EB
and EE estimates combined; and an “all” combination,
with all four estimates combined. For these combina-
tions, we weight by the inverse variance of each estima-
tor.
We then cross-correlate each of these reconstructed

lensing and curl fields with the Planck CIB maps. We ob-
tain bandpower covariances from the 2048 Monte Carlo
simulations discussed above, which we correlate with
the same Planck CIB maps. We test for convergence
of the covariance matrix by using half the simulations
and checking that we obtain stable results. The esti-
mators are correlated (Hu & Okamoto 2002): the simu-
lated maps are generated from realizations of T, E, and
B including the expected amount of TE cross-power, and
each simulated T, Q and U map is lensed by the same
lensing field. When combining estimators, we form the
same linear combination with each of the 2048 simula-
tions that we form with the data. The inter-band covari-
ance matrix which we obtain for each of these combina-
tions thus includes all expected sources of correlation.
In Figure 1, we show the result for the “all” combi-

nation of estimators, with error bars representing the
on-diagonal part of the corresponding covariance ma-
trix. Neighboring bins are correlated by roughly 2–5%.
We fit to the model described in Section 4 with a free
overall amplitude, A. We find a best-fit amplitude of
A = 1.02+0.12

�0.08, corresponding to a detection signal-to-

noise ratio of
qP

i

(�2
i,null � �2

i,min) = 9.1. Here �2
i,null

corresponds to the value of �2 for A = 0 and �2
i,min is

the value at which the �2 is minimized. These results,
together with those for each estimator and patch sepa-
rately, are summarized in Table 1.
We show the co-added cross power derived from the

EE and EB estimators combined in Figure 2. Here the
lensing of the CMB polarization is detected at signal-
to-noise ratio of 4.5. The cross power derived from the
EB estimator alone is shown in Figure 3. This yields a
detection of B-mode polarization from lensing at a signal-
to-noise ratio of 3.2.
We run the same pipeline for the curl reconstructions.

As shown in Table 2 and Figure 4, the curl estimates are
consistent with null. In Table 2, we quote amplitudes
relative to the usual scalar lensing curve.

6. SYSTEMATIC ERROR TESTS

The statistical uncertainties on our results for the
cross-correlation amplitude are approximately 10% for
the TT estimator and 30% for the EB estimator; we will
show here that no known sources of systematic uncer-
tainty are comparable in size.
Possible instrumental systematics include calibration

and beam uncertainty. The largest known beam uncer-
tainty is the overall (monopole) beam profile, for both the
ACTPol and Planck surveys. For ACTPol, we estimate
the e↵ect of the beam and calibration errors together on
the lensing reconstruction by computing e↵ective error
bands as functions of CMB multipoles, as described in
N14. This yields an e↵ective error band across the CMB
power spectrum of about 3%. We then perform recon-
struction on the temperature maps, scaling the maps in
the Fourier domain by +1 and �1�. This yields an o↵-

TABLE 1
Fits and �2 values for the lensing convergence field

S/N A �2
min (⌫) PTE

TT, D1 2.4 0.90±0.36 9.6 (9) 0.39
TT, D5 3.3 0.82+0.24

�0.20 11.5 (9) 0.24
TT, D6 7.2 1.06±0.12 13.7 (9) 0.13

TE, D1 1.5 2.10±1.40 4.6 (9) 0.87
TE, D5 0.2 0.22+0.80

�0.84 13.5 (9) 0.14
TE, D6 2.0 0.90±0.44 4.1 (9) 0.91

EE, D1 1.3 -2.14+1.60
�1.56 4.3 (9) 0.89

EE, D5 0.5 0.46±0.88 5.2 (9) 0.82
EE, D6 4.0 1.74+0.44

�0.40 11.5 (9) 0.24

EB, D1 0.1 0.26+1.92
�1.88 9.8 (9) 0.37

EB, D5 1.3 1.26+0.88
�0.92 3.8 (9) 0.92

EB, D6 2.9 1.38+0.44
�0.48 12.0 (9) 0.21

EB, all 3.2 1.30±0.40 25.9 (29) 0.63

Pol. estimators, all 4.5 1.26+0.28
�0.24 30.4 (29) 0.39

All estimators, all 9.1 1.02+0.12
�0.08 37.2 (29) 0.14

Fit results for the cross power between the lensing field from
ACTPol maps and Planck maps at 545 GHz, for each field
and estimator. The first column shows the signal to noise
ratio calculated using the method described in the text. The
second shows the best-fit amplitude A, and associated
uncertainty, relative to the model which fits the Planck data.
The third column shows the values of �2 at this best-fit point
and the number of degrees of freedom. The fourth shows the
probability to exceed the given value of �2. The rows marked
“all” are obtained by adding the �2 functions and performing
new fits for A.

TABLE 2
Fits and �2 values for the lensing curl field

S/N A �2
min (⌫) PTE

TT, D1 0.0 0.02+0.36
�0.40 17.2 (9) 0.05

TT, D5 0.5 -0.14±0.24 6.7 (9) 0.67
TT, D6 0.2 0.02+0.16

�0.12 8.8 (9) 0.46

TE, D1 1.1 -1.46±1.32 11.9 (9) 0.22
TE, D5 0.2 0.18±0.80 5.7 (9) 0.77
TE, D6 1.1 -0.50+0.40

�0.44 5.6 (9) 0.78

EE, D1 0.1 0.26+1.96
�1.92 3.9 (9) 0.92

EE, D5 0.5 0.54+1.04
�1.00 7.2 (9) 0.62

EE, D6 1.6 -0.78+0.48
�0.52 11.5 (9) 0.24

EB, D1 1.9 2.26±1.16 10.9 (9) 0.28
EB, D5 1.1 0.66±0.56 5.5 (9) 0.79
EB, D6 0.1 0.02+0.28

�0.24 17.3 (9) 0.04

EB, all 1.0 0.22+0.24
�0.20 37.8 (29) 0.13

Pol. estimators, all 0.5 0.10±0.20 32.7 (29) 0.29

All estimators, all 0.1 0.02+0.08
�0.12 36.3 (29) 0.16

Null check for the cross power between the curl lensing field
obtained from ACTPol maps and Planck maps at 545 GHz,
for each field and estimator. Columns are as in Table 1, where
quantities are quoted relative to the same (scalar) model.

set of approximately ±4% in the best-fit cross-correlation
amplitude for D6. We thus assign a systematic uncer-
tainty of 4% to our final result.The Planck map-level
beam error has amplitude 0.3% to l = 3000, and is thus
negligible for this analysis. Other beam e↵ects are ex-
pected to be subdominant. Common mode beam ellip-
ticity is expected to be subdominant due to isotropy of
the maps in the deep regions we use.

Results  arXiv:1412.0626
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n.b., ACTPol: only 3 months of data



Delensing with the CIB
4

shown a correlation at the fcorr = 0.8 level, we will pes-
simistically also consider delensing with correlation coef-
ficients as low as fcorr = 0.4. This could e↵ectively be
the case, for example, in a region with comparable fore-
ground and CIB power. The introduction of this cor-
relation coe�cient results in a simple expression for the
lensing estimate signal+noise power spectrum used in
Eq. (8);

C�
` +N�

` = C�
` /f

2
corr. (13)

Assuming Gaussianity of the likelihood function
L(d|✓) which gives the probability distribution of a cos-
mological model ✓ given some set of independent obser-
vations d, we use the Fisher matrix formalism to compute
forecasted errors on the tensor tilt. For the present anal-
ysis, the data covariance matrix will be reduced to the
B-modes power spectrum since the constraining power on
cosmological parameters such as r and nT comes mainly
from the B-mode signal. Each element of the Fisher ma-
trix reduces to (Jungman et al. 1996)

Fij =
`
maxX

`
min

�
CB

`

�
, i

�
CB

`

�
, j�

�CB
`

�2 , (14)

where the expected 1� error on the measurement of the
B-modes power spectrum is

�CB
` =

s
2

(2`+ 1)fsky
CB

` . (15)

The marginalized error on a given parameter of the model
corresponds to �(✓i) =

p
(F�1)ii.

3. CONSTRAINTS ON TENSOR TILT

We have computed the projected constraint on the ten-
sor tilt assuming di↵erent delensing scenarios; results are
shown in Fig. 3. The two limiting cases correspond to a
situation where no lensing B modes are removed (solid
orange curves) and where the total B modes include no
lensing B modes (solid light gray curves). The solid and
dotted dark gray curves correspond to quadratic and iter-
ative CMB delensing and the shaded regions correspond
to delensing using the CIB, where the correlation fac-
tor fcorr is comprised between 0.4 and 0.8. For sim-
plicity we will consider that the E-mode estimate and
the lensing potential estimate are obtained through the
same CMB experiment when considering CMB delens-
ing, which makes the noise power spectra in equations
(8) and (10) parametrized by the same beam width and
sensitivity. This forecast could be expanded to the case
where a large-scale mission is used for the measurement
of the E modes and a higher resolution experiment is
used for estimating the lensing potential.
The beam width ✓FWHM has been fixed to 4 arcmin in

both panels; it has been shown that beam size is not an
important factor (Boyle et al. 2014; Dodelson 2014; Wu
et al. 2014). We have included modes between lmin = 10
and lmax = 3000 in the Fisher matrix calculation, al-
though the large scale cuto↵ value does not a↵ect sig-
nificantly the projected constraints on nT (Boyle et al.
2014; Dodelson 2014). The sky coverage has been held
to fsky = 0.5, although for a high resolution experiment
the results scale with fsky (Dodelson 2014).

Fig. 3.— Top panel: Forecasted constraint on the tensor tilt
nT marginalized over r for rfid = 0.2 and varying polarization
sensitivity. Bottom panel: Forecasted constraint on the tensor tilt
nT marginalized over r for �P=1 µK-arcmin and varying fiducial
values of r. In both panels the black dashed line shows the absolute
value of the tensor tilt given it is related to the fiducial value of
r through the consistency relation nT = �r/8. The sky coverage
has been fixed to fsky = 0.5 and the beamsize to 4 arcmin in both
cases.

The top panel of Fig. 3 shows the forecasted error on
nT as a function of the polarization experimental noise
level. As �P approaches 0, no fundamental floor due to
the iterative delensing procedure is found, in conformity
with previous works (Seljak & Hirata 2004; Smith et al.
2012; Wu et al. 2014). Better than linear improvement
on �(nT ) is observed as polarization noise drops below

Error on nT

assuming r = 0.2

Simard+ 2014

c.f.  ACTPol first season: 15 uK-arcmin



ACTPol:  Three lensing topics

1. Pol. and Temp. large-scale lensing x Planck CIB
van Engelen+, arxiv:1412.0626

2. Halo lensing detection 
Madhavacheril+, arxiv:1411.7999

3. Pol. and Temp. large-scale lensing autospectrum
In prep.



Lensing by Individual Halos

E.g.:  sim by Lewis & King (2006)

• Cluster at z = 1 with M200 = 1015 Msol 
2
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FIG. 1: Simulated effect of cluster lensing on the CMB temperature. Left: the unlensed CMB; middle: the lensed CMB; right:
the difference due to the cluster lensing. The cluster is at z = 1, and has a spherically symmetric NFW profile with mass of
M200 = 1015h−1M" and concentration parameter c = 5. Distances are in arcminutes, and can be compared to r200 = 3.3 arcmin.
This is a rather clean realization; in general the dipole pattern can be weaker and/or more complicated. Note the inverted
direction of the gradient within the arcminute-scale Einstein radius in the middle figure.

II. CMB LENSING

A. CMB temperature lensing

The unlensed CMB is very smooth on small scales due to diffusion damping, so the small scale unlensed CMB can
be locally approximated as a gradient. Clusters act as converging lenses, making CMB photons appear to originate
further from the centre of the cluster than they actually do. So the side of the cluster on the cold side of the gradient
will look hotter after lensing, and that on the hot side will look colder, giving a distinctive dipole-like signature aligned
with the direction of the background CMB gradient. The CMB lensing signature therefore consists of small scale
wiggles in the observed temperature (and polarization) in an otherwise smooth background [12, 13, 14, 15, 16]. A
particular example is shown in Fig. 1. Note that within the Einstein radius the lensing is not strictly weak (though
deflection angles remain small), however we shall include the signal everywhere as the strong lensing signal on the
CMB is no more difficult to model than the weak signal in the single thin lens approximation that we use.

For a Gaussian unlensed temperature field Θ, the temperature gradient variance is given by

〈|∇Θ|2〉 =
∑

l

l(l + 1)
2l + 1

4π
CΘ

l , (1)

where CΘ
l is the unlensed CMB temperature power spectrum. For typical ΛCDM models that we consider here the

rms is ∼ 14µK/arcmin. Since massive clusters can give deflections of the order of an arcminute, the signal is expected
to be at the ∼ 10µK level. The scale of the dipole-like pattern induced by the cluster lensing is much smaller than the
scale of fluctuations in the unlensed CMB, and so should in principle easily be observable with high enough resolution
and low enough noise. However the signal depends on the background gradient, so only clusters in front of a significant
gradient can have their mass constrained this way. The gradient at a point is a Gaussian random variable, so how
often this happens will depend on how sensitive the observations are to small signals and the level of complicating
signals acting as sources of correlated noise.

The observed direction of a point on the CMB last scattering surface is related to the direction it would have had
without lensing by a deflection angle α, determined in the small-angle Born approximation by

α(n̂) = −2

∫ χS

0
dχ

(

1 −
χ

χS

)

∇⊥Ψ(χn̂; η), (2)

where n̂ is the direction of observation, χS is the comoving distance to the source at the last scattering surface (taken
to be thin), η is the time at which the photon was at position χn̂, and Ψ is the Newtonian potential. For cluster
lensing the integral is dominated by the small part through the thin cluster and the angular factor 1 − χL/χS may
be taken out of the integral, where χL is the distance to the cluster. The potential is related to the comoving density
perturbation via the Poisson equation. For a more detailed review of CMB lensing see Ref. [17].

If the background gradient could be measured cleanly away from the cluster, the cluster deflection angles could be
reconstructed directly, and hence used to solve for the cluster profile and mass given certain assumptions. Unfortu-
nately the situation is more complicated because the unlensed CMB isn’t exactly a gradient — clusters have finite
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aka “cluster CMB lensing”, but we stack on galaxies



Lensing by Individual Halos

• Reconstruction concept is 
same as for LSS 

• ...but different triangle 
configurations

lcmb, small

lcmb, small

Llensing, large

lcmb, small

lcmb, large
Llensing, small



Lensing by Individual Halos

• Proposed 10 years ago (“CMB cluster lensing”), but results coming 
out now

• ACTPol 2014: CMASS sample of 12,000 CMASS SDSSIII/BOSS 
galaxies

• <z> ~ 0.4, <M> ~ 1013 M⨀

• c.f. SPT: SZ-selected clusters, 1014 - 1015 M⨀ (Baxter+ 2014)



Halo Lensing - stacking results
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FIG. 3: Top panel: Shown are the curl null test performed
on the stack of reconstructed convergence stamps centered
on CMASS galaxy positions, and a random-position null test
where reconstructed convergence stamps are centered on ran-
dom positions in the data. Middle and bottom panels: Shown
are the curl and random-position null tests, respectively, in
the two-dimensional plane. The lack of a red spot in the mid-
dle confirms the null test.

SYSTEMATIC CHECKS

Two di↵erent null tests are performed to verify the ro-
bustness of the signal. The first is to stack on random
positions in the data. As mentioned above, all of the
stacked images have a subtracted mean field stamp that
is determined from averaging 15 realizations of randomly
selected stamps from the data. Therefore, by construc-
tion the measured signal is the excess above that from
random locations. However, we show a single random-
position realization which contains the same number of
stamps as are in the galaxy stack. We subtract the mean
field stamp from this single realization and plot the re-
sulting profile in the top panel of Figure 3 (brown circles).
The data points are consistent with the null hypothesis
with a probability-to-exceed (PTE) of 0.92.

The second null test is a curl test where we repeat the
analysis of stacking reconstructions centered on CMASS
galaxies and subtract a mean field stamp as before. How-
ever, this time the divergence in Eq 7 is replaced with a
curl, and the first instance of the dot product l ·l1 in Eq 9
(not in fTT ) is replaced with a cross product [4, 55, 56],
where both the curl and cross product are projected per-
pendicular to the image plane. The reconstruction is
then expected to contain only noise since lensing is not
expected to generate a curl signal in temperature maps.
The curl reconstruction data points scatter about zero,
with a PTE of 0.08, as shown in Figure 3 (red stars).

As can be seen in Figure 2, the mean signal is highest
in D5. A histogram analysis of the stamps in both D5
and in the quadrant of D5 with the highest mean signal
shows no apparent outliers. We note that excluding this
quadrant from our analysis still results in a S/N > 3�
within 10 arcminutes.

We also consider several possible contaminants that
could bias a detection of CMB halo lensing. Ionized gas
in clusters hosting the stacked galaxies could produce a
decrement in the CMB temperature at 146 GHz due to
the thermal Sunyaev-Zeldovich (tSZ) e↵ect [57, 58]. In
order to determine the e↵ect of such a contaminant on the
lensing reconstruction, we added a Gaussian decrement
with a peak value of �35µK and 1� width of 1 arcminute
to CMB temperature maps lensed by NFW profiles as
discussed above. We adopted this as a conservative level
of tSZ for CMASS halos (see for example [59]). This
contamination resulted in the reconstruction being bi-
ased low by about 0.3� within 3 arcminutes at ACTPol
noise levels, with negligible bias beyond 3 arcminutes.
An identical check was performed for 35µK increments
(corresponding to point source emission) with a similar
suppression of the signal. In addition, no appreciable
tSZ decrement or point source increment is found when
stacking the stamps taken directly from CMB temper-
ature maps and centered on the CMASS galaxies, after
these stamps have been filtered to isolate modes between

5

FIG. 1: Left: The azimuthally averaged signal from stacked reconstructed convergence stamps centered on CMASS galaxy
positions for all three ACTPol deep fields combined. The green dashed curve shows the best-fit NFW profile. Right: The
reconstructed convergence stack in the two-dimensional plane, where the horizontal and vertical scales are in arcminutes. The
signal is the dark red spot in the middle. The peak is o↵set by about 10 from the center; o↵sets of > 10 are seen roughly 20% of
the time in simulations of centered input halos given ACTPol noise levels. The detection significance above null is 3.8� within
10 arcminutes, and the best-fit curve is preferred over null with a significance of 3.2� within 10 arcminutes.

FIG. 2: Shown are reconstructed convergence profiles cen-
tered on CMASS galaxy positions for each ACTPol deep field
separately. The significance with respect to null within 4 ar-
cminutes is 2.0�, 3.6�, and 1.3� for ACTPol Deep 1, 5, and 6
respectively. The green dashed curve is the best-fit NFW pro-
file from all the Deep fields combined, and the black dashed
curve is the best-fit NFW profile from a subset of the CMASS
galaxies measured via optical weak lensing [48].

Fitting the data points within 10 arcminutes from the
center with an NFW profile, a best-fit profile is obtained
with a mass of M200⇢̄0 = (2.0 ± 0.7) ⇥ 1013 h�1M� and
a concentration of c200⇢̄ = (5.4± 0.8). This result is ob-
tained by imposing a prior on the c-M relation from [54]
assuming Gaussian errors on the normalization of this
relation of 20% as found in [48]. We note that the best-

fit mass and mass error are unchanged with and without
the prior; however, since there is significant degeneracy
in the concentration, given our noise levels, the prior in-
fluences the best-fit c200⇢̄0 and corresponding error. This
best-fit curve gives a reduced chi-square of �2/⌫ = 1.5 for
⌫ = 3 degrees of freedom, and is consistent with the best-
fit curve from [48]. The data also favors the best-fit curve
from [48] over the null line ( = 0) at a significance of
3.2� within 10 arcminutes, where we calculate this sig-

nificance using
q

�2
null � �2

best�fit. Restricting to within

4 arcminutes, the model is favored over null with a sig-
nificance of 2.9�.

The profile of the reconstructed lensing stack for each
ACTPol patch is shown in Figure 2. An excess above
null is seen in all three patches with a significance of
2.0�, 3.6�, and 1.3� within 4 arcminutes for D1, D5, and
D6 respectively. The black-dashed curve in Figure 2 is
an NFW profile with the best-fit mass and concentra-
tion found from optical weak lensing of a subset of the
CMASS galaxy sample [48]. This best-fit mass and con-
centration for the subset is M200⇢̄0 = 2.3 ⇥ 1013 h�1M�
and c200⇢̄0 = 5.0, where the concentration is from the
best-fit concentration-mass relation found in [48], calcu-
lated at the mean redshift of the subset (z = 0.55).5

5
In [48], a best-fit of c200⇢̄0 = 5.0 is found for CMASS galaxies

when their model allows for o↵-centering of CMASS galaxies in

dark matter halos. Without this degree of freedom, a best-fit of

c200⇢̄0 = 3.2 is found.

main result

curl estimates

stacking random 
positions
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FIG. 1: Left: The azimuthally averaged signal from stacked reconstructed convergence stamps centered on CMASS galaxy
positions for all three ACTPol deep fields combined. The green dashed curve shows the best-fit NFW profile. Right: The
reconstructed convergence stack in the two-dimensional plane, where the horizontal and vertical scales are in arcminutes. The
signal is the dark red spot in the middle. The peak is o↵set by about 10 from the center; o↵sets of > 10 are seen roughly 20% of
the time in simulations of centered input halos given ACTPol noise levels. The detection significance above null is 3.8� within
10 arcminutes, and the best-fit curve is preferred over null with a significance of 3.2� within 10 arcminutes.

FIG. 2: Shown are reconstructed convergence profiles cen-
tered on CMASS galaxy positions for each ACTPol deep field
separately. The significance with respect to null within 4 ar-
cminutes is 2.0�, 3.6�, and 1.3� for ACTPol Deep 1, 5, and 6
respectively. The green dashed curve is the best-fit NFW pro-
file from all the Deep fields combined, and the black dashed
curve is the best-fit NFW profile from a subset of the CMASS
galaxies measured via optical weak lensing [48].

Fitting the data points within 10 arcminutes from the
center with an NFW profile, a best-fit profile is obtained
with a mass of M200⇢̄0 = (2.0 ± 0.7) ⇥ 1013 h�1M� and
a concentration of c200⇢̄ = (5.4± 0.8). This result is ob-
tained by imposing a prior on the c-M relation from [54]
assuming Gaussian errors on the normalization of this
relation of 20% as found in [48]. We note that the best-

fit mass and mass error are unchanged with and without
the prior; however, since there is significant degeneracy
in the concentration, given our noise levels, the prior in-
fluences the best-fit c200⇢̄0 and corresponding error. This
best-fit curve gives a reduced chi-square of �2/⌫ = 1.5 for
⌫ = 3 degrees of freedom, and is consistent with the best-
fit curve from [48]. The data also favors the best-fit curve
from [48] over the null line ( = 0) at a significance of
3.2� within 10 arcminutes, where we calculate this sig-

nificance using
q

�2
null � �2

best�fit. Restricting to within

4 arcminutes, the model is favored over null with a sig-
nificance of 2.9�.

The profile of the reconstructed lensing stack for each
ACTPol patch is shown in Figure 2. An excess above
null is seen in all three patches with a significance of
2.0�, 3.6�, and 1.3� within 4 arcminutes for D1, D5, and
D6 respectively. The black-dashed curve in Figure 2 is
an NFW profile with the best-fit mass and concentra-
tion found from optical weak lensing of a subset of the
CMASS galaxy sample [48]. This best-fit mass and con-
centration for the subset is M200⇢̄0 = 2.3 ⇥ 1013 h�1M�
and c200⇢̄0 = 5.0, where the concentration is from the
best-fit concentration-mass relation found in [48], calcu-
lated at the mean redshift of the subset (z = 0.55).5

5
In [48], a best-fit of c200⇢̄0 = 5.0 is found for CMASS galaxies

when their model allows for o↵-centering of CMASS galaxies in

dark matter halos. Without this degree of freedom, a best-fit of

c200⇢̄0 = 3.2 is found.

Best fit: NFW,
M = (2.0±0.7)1013 h-1M⨀
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FIG. 1: Left: The azimuthally averaged signal from stacked reconstructed convergence stamps centered on CMASS galaxy
positions for all three ACTPol deep fields combined. The green dashed curve shows the best-fit NFW profile. Right: The
reconstructed convergence stack in the two-dimensional plane, where the horizontal and vertical scales are in arcminutes. The
signal is the dark red spot in the middle. The peak is o↵set by about 10 from the center; o↵sets of > 10 are seen roughly 20% of
the time in simulations of centered input halos given ACTPol noise levels. The detection significance above null is 3.8� within
10 arcminutes, and the best-fit curve is preferred over null with a significance of 3.2� within 10 arcminutes.

FIG. 2: Shown are reconstructed convergence profiles cen-
tered on CMASS galaxy positions for each ACTPol deep field
separately. The significance with respect to null within 4 ar-
cminutes is 2.0�, 3.6�, and 1.3� for ACTPol Deep 1, 5, and 6
respectively. The green dashed curve is the best-fit NFW pro-
file from all the Deep fields combined, and the black dashed
curve is the best-fit NFW profile from a subset of the CMASS
galaxies measured via optical weak lensing [48].

Fitting the data points within 10 arcminutes from the
center with an NFW profile, a best-fit profile is obtained
with a mass of M200⇢̄0 = (2.0 ± 0.7) ⇥ 1013 h�1M� and
a concentration of c200⇢̄ = (5.4± 0.8). This result is ob-
tained by imposing a prior on the c-M relation from [54]
assuming Gaussian errors on the normalization of this
relation of 20% as found in [48]. We note that the best-

fit mass and mass error are unchanged with and without
the prior; however, since there is significant degeneracy
in the concentration, given our noise levels, the prior in-
fluences the best-fit c200⇢̄0 and corresponding error. This
best-fit curve gives a reduced chi-square of �2/⌫ = 1.5 for
⌫ = 3 degrees of freedom, and is consistent with the best-
fit curve from [48]. The data also favors the best-fit curve
from [48] over the null line ( = 0) at a significance of
3.2� within 10 arcminutes, where we calculate this sig-

nificance using
q
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null � �2

best�fit. Restricting to within

4 arcminutes, the model is favored over null with a sig-
nificance of 2.9�.

The profile of the reconstructed lensing stack for each
ACTPol patch is shown in Figure 2. An excess above
null is seen in all three patches with a significance of
2.0�, 3.6�, and 1.3� within 4 arcminutes for D1, D5, and
D6 respectively. The black-dashed curve in Figure 2 is
an NFW profile with the best-fit mass and concentra-
tion found from optical weak lensing of a subset of the
CMASS galaxy sample [48]. This best-fit mass and con-
centration for the subset is M200⇢̄0 = 2.3 ⇥ 1013 h�1M�
and c200⇢̄0 = 5.0, where the concentration is from the
best-fit concentration-mass relation found in [48], calcu-
lated at the mean redshift of the subset (z = 0.55).5
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In [48], a best-fit of c200⇢̄0 = 5.0 is found for CMASS galaxies

when their model allows for o↵-centering of CMASS galaxies in

dark matter halos. Without this degree of freedom, a best-fit of

c200⇢̄0 = 3.2 is found.

Best fit: NFW,
M = (2.0±0.7)1013 h-1M⨀



ACTPol:  Three lensing topics

1. Pol. and Temp. large-scale lensing x Planck CIB
van Engelen+, arxiv:1412.0626

2. Halo lensing detection 
Madhavacheril+, arxiv:1411.1799

3. Pol. and Temp. large-scale lensing autospectrum
In prep.



Lensing auto-power 
spectrum

•ACTPol season 1 
autospectrum now at >8σ 
with 200 sq. deg (in prep.)

season 1 forecast 
(current data)

all-season forecast 

from Blake Sherwin

•1-2 years: ~50 sigma on 
~2500 sq. deg.

• neutrino mass to <~ 0.1 
eV, together with Planck



Lensing auto-power 
spectrum

•AdvACT (“stage III CMB”): 
Map mass over nearly full sky 
to high res; overlap with LSST

•~220σ lensing on 20k sq. deg. 
(2016-17)

•Neutrino mass to 0.04 eV

from Blake Sherwin



Summary

• Lensing of pol. and temp. seen with ACTPol survey, in cross-
correlation with Planck CIB

• First detection of lensing by individual dark matter halos

• To come: tight constraints on cosmology


